By Adam Duracz and Yingfu Zeng

Player class

class Wiffwaffer (n)

v [=]

if bounced

== true

private
mode = "Wait";
bounced = false; // Tell whether the ball bounced or not
serve = false; // The Game class will set serve flag to true
hit = false; // when it's your turn
count = 0;
ballv = [0,0,0];
ballp = [0,0,0];
batp = [1.6,0,0.21;
v = [0,0,0]; // Bat's speed
batAngle = [0,0,0.1]; // Normal vector of the bat's plane
batAngle' = [0,0,0];
// Player(l) starts at [-1.6,0,0.2], Player(2) starts at [1.6,0,0.2]
startPoint = [1.6*(-1)"n,0,0.2];
v2 = [0,0,0]; // The output speed of the ball, which we desired
v21 = [0,0,0];
4 = 0;
nl = 0;
t = 0;
t' = 1;
end
if mode ~= "Wait" && mode ~= "Prepare" && mode ~= "Hit"
mode = "Panic!";
end;
t! [=] 1;
switch mode
case "Wait" // While waiting, moving the bat to starting point
count = 0;
if == 1
v [=] startPoint-batp;
else
v [=] startPoint-batp;
end;
batAngle' [=] [0,0,0]-batAngle;
hit = false;
if serve == true
mode = "Prepare";
bounced = false;
else
mode = "Wait";
end;
case "Prepare" // Prepare to hit the ball

// After the ball has bounced,
// start moving the bat towards
(ballp-batp).*[0,20,0] +

the ball
(ballp-batp) .*[0,0,25] +

(ballp+[0.12*(-1)"n,0,0]-batp).*[25,0,0];

count = count+l;
mode = "Hit";
end;

end;

if norm(batp - ballp)<0.15 && abs(dot(ballp,[1,0,0]))

// When the ball has bounced and it is
if count > 0 && dot(ballv,[0,0,1])

>=
0.8* abs(dot (startPoint, [1,0,0]))

at the highest position
< 0.1 && bounced true

mode = "Hit"; // This player decide to hit.
end;
if dot(ballp,[0,0,1]) < 0O && bounced == false
bounced = true;
end;
if (serve ~= true)
mode = "Wait";
end;
case "Hit" // Decide how you want to hit the ball,
if n ==
v2 = [-(dot(ballp,I[1,0,0]) + 0.75 + 0.5), // desired ball speed in X dim
- dot(ballp, [0,1,0]), // desired ball speed in Y dim
5 - dot(ballp, [0,0,11)]; // desired ball speed in Z dim
v21l = (v2 - ballv) / (-2) ;
nl = norm(v2l);
batAngle = v21 / nl;
z = (nl- dot (batAngle, [1,0,0]) * 4) / dot(batAngle, [0,0,1]1);
v = ballv - [4,0,z];
else
v2 = [(- dot(ballp,[1,0,0]) + 0.75 + 0.5), // desired ball speed in X dim
- dot (ballp, [0,1,0]), // desired ball speed in Y dim
5 - dot(ballp, [0,0,1]1)1; // desired ball speed in Z dim
v21l = (v2 - ballv) / (-2) ;
nl = norm(v2l);
batAngle = v21 / nl;
z = (nl- dot (batAngle, [1,0,0])*4) / dot(batAngle, [0,0,1]);
v = ballv - [4,0,z];
end;
serve = false;
hit = true;
mode = "Wait";
case "Panic!"
end
end

Player class design description

The design of our player is based on an approximation of the desired strategy, which is to
decide on a certain desired landing point on the opponents half of the court, and then to derive
the velocity and angle of the bat necessary to make the ball go there.

BatActuator BallActuator Landingpoint
A '.
N Our method _A

o
e o mm mm s s Es s s s o mm omm s

To simplify calculations we have assumed that the ball should spend one second in the air.
Further, we approximate the force exerted on the ball by air resistance by the constant 1, which
we arrived at in the following manner.

Our model assumes that air resistance is the only force acting on the ball in the X and Y
directions when flying (when it is not bouncing). If we assume that the velocity of the ball in the

X direction is 3, and we want to make the ball fly for approximately 1 second every time we hit it,

1

then the force exerted by air resistance at first is c.. * 1y’ = . 3% = % which will decrease

during the flight, and we approximate the average force to be 1. We use this to approximate the
effect that air resistance has on the distance that the ball will travel, by integrating this constant:

1t
[(J 1ds)dt = % For example, if the speed in the X direction is 3, we used Acumen to estimate
00

how far the ball will travel with air resistance and then compared this distance to that which our
approximation yields.

As can be seen in the following plot of the beginning of a game featuring our player (around the
time of the first return by our player), the time elapsed between when our player hits the ball and
when the ball hits the table is approximately 1 second, and the landing point is approximately

[— 0.72, 0.07, 0] which is very close to our goal [— 0.75, 0, 0].

We now know the desired velocity of the ball after the impact. In order to achieve this speed we
need to calculate the velocity and angle of the bat that will have this effect on the ball. The
BallActuator class uses the following equation to calculate the velocity of the ball after the
impact:

v2 = vl — dot(2.* (vl — v3),angle) * angle (1)

So, we need to provide v3 and angle. We start with angle:
v2 — vl = dot(2.* (vl — v3),angle) * angle

From this equation, we can see that dot(2 * (vl — v3), angle) is a constant, so
angle = (v — vl)/norm(v2 — vl).

Now we need to determine v3, and there are many choices of this function that satisfy equation
(1), we chose the vector vl — v3 = [4,0, z] and only vary z.

	By Adam Duracz and Yingfu Zeng
	Player class
	Player class design description

