
Geoparquet in person meetup at Data +
AI

Over the past few years, GeoParquet has seen significant adoption by major software products
and data providers, signaling a robust growth trajectory. Concurrently, there’s a burgeoning
interest in integrating geo support more natively into Parquet, as well as other related formats
and protocols within this ecosystem. While this is undoubtedly positive, it presents a unique set
of challenges. Without a swift and unified approach to incorporating geo functionality, there’s a
real risk of fragmentation in geospatial support across different initiatives.

To address this, we are convening an in-person meetup aimed at fostering a collaborative
dialogue among all stakeholders. Our goal is to forge a coherent vision for making GEO a
primary data type across various projects. This gathering will serve as a platform to present and
align on this vision, ensuring a unified approach moving forward.

The target technologies we are looking at are:

ARROW - geoarrow
PARQUET - geoparquet
ICEBERG
DELTA LAKE
HUDI
AVRO
ORCx

When: Thursday June 13th at 8AM - 9:30AM / 5PM - 6:30PM CET

Where: Planet office, 645 Harrison Street, 4th
Floor, San Francisco, CA 94107.
Remote: Possible to joining remotely Geoparquet in person meetup at Data + AI
Thursday, June 13 · 8:00 – 9:30am https://planet.zoom.us/j/98864285995
Register: To register just add your name to the list of attendees here.

To get in at Planet Labs you can try to go in and talk to the security guard and give them your
name, I tried to get everyone on the list. They'll send you down to the elevator. The 4th floor is
key carded, but I'll try to send it up.

Just fill out the iPad form and say your are here to see Chris Holmes on it, and I’ll come get you.

The easiest will likely be to just text / call me (Chris Holmes) at 718-290-5730 when you're out
front. I may come down and wait for some people.

https://planet.zoom.us/j/98864285995

AGENDA:

1.​ Overall intro to what all these formats/protocols are
2.​ Intro to existing initiatives and state of geo on each of them,

a.​ arrow - geoarrow
b.​ Parquet - geoparquet and native geo type
c.​ Iceberg - current proposal
d.​ Delta lake - I don’t think there is currently geo
e.​ Hudi - I don’t think there is currently any geo
f.​ Avro,orc - no primary support

3.​ What could be a set of common recommendations to try to add geo to each of these
based on geoparquet experience.

Attendees:
Chris Holmes - Planet
Javier de la Torre - CARTO
Milos Colic - CARTO
Jia Yu - Wherobots
Ben Pruden - Wherobots
Matthew Topol - Voltron Data
Ian Cook - Voltron Data
Kristin Cowalcijk (remote) - Wherobots
Feng Zhang（remote) - Wherobots
Joris Van den Bossche (remote) - Voltron Data
Jake Wasserman (remote) - Meta
Sergey Sukov - Action Engine
Dewey Dunnington (remote) - Voltron Data
John Powell (remote) - Addresscloud
Matt Travis (remote) - Addresscloud
Mark
Shoaib Burq (remote) - geobase.app

NOTES

Javi: arrow -> encoding, parquet -> data type, iceberg -> operators and usage api

Jia: Iceberg adds another layer of table metadata, that lets you define table name, database
name, etc. And allows you to perform db operations - insertion, deletion, upsert, etc in a cloud
environment. Enables ‘lake house’ / ‘data lake’. In havasu product we added geospatial support
into Havasu. Added 2 things - 1) how to store data in iceberg. For storing data in iceberg, and

for that we used GeoParquet. For raster we did our own format. And then on top of that added
table operations, including basic filter pushdown, and also implemented a writer. Iceberg needs
to interface with a format.
​ Javi - in iceberg do you define st_ functions?
​ Jia - no, it’s just how you store stuff.
​ Milo - it’s a protocol, not a format. Historically the issue is that parquet has lots of files,
and if there’s multiple threads you can have partially executed jobs. So added transaction logs
for concurrent writes, snapshots, etc. Like having a database, to do those operations, but not
having a database - no always on service.
​ Jia/Matt/Milos - If you don’t care about spatial filter pushdown then iceberg does not
need any expression, the engine covers it. Iceberg defines partition expressions - it provides a
list of transforms, so you can do partitions not just on exact value of column, but also a
transform of a column. In the geo iceberg proposal it defines that bit, so you don’t have to do full
scans.
​ Jia - To enable filter pushdown you only need one expression - st_intersects. All others
can leverage that. ‘Are there rows in this file that might match’ (Matt).

Javi - How did proposal start with apple?

-​ Jia - a few months back we (Jia and Javi) talked to Tabular, they said happy to help,
we’re review proposal, but can’t put much time in. But Apple was very interested,
contacted engineers looked at design doc and havasu implementation. Interested for
apple maps, they have huge amounts of data, they’re using Sedona and iceberg, and
really want to have it in iceberg. They have a number of iceberg PMC members. The
proposal is not identical to Havasu - community wants some change to make it into
iceberg.

-​ Don’t want properties in the file metadata, they want things in table properties.
Unless those properties become standard in Parquet - they don’t want it in their
metadata.

-​ Matt - iceberg as a spec, it’s not valid to consume any individual file in the
table without going through iceberg. So they want it at the iceberg table
level. That’s why it’d be ideal to get the geometry types in the parquet
spec, and then iceberg could add a geometry type that matches / is
similar to the.

-​ Milos - important to understand that at the file level many files are ‘not
valid’, since things got deleted, and so if you tried to read the iceberg
parquet file it could be very bad.

-​ Joris - it may not really matter, as iceberg could put the table in
their data properties. They don’t really need that native type. It is
useful for the file to encode the geometry and use the statistics.

-​ Jia - yes, if you don’t care about other properties it does not need
native geometry type.

-​ Milos - you descend into implementation by convention, and
having a native type could avoid some of those potential
problems.

-​ Matt - many iceberg implementations do different things. Some
have their own parquet reader. Like Joris said it may not matter at
the iceberg level. But benefit of having it in the underlying file. In
Snowflake you can just throw all your parquet files and have it
import it. So proper translation between parquet geometry type
and what cloud vendors would result. Some people may just grab
files and say ‘make me a table from these files’.

-​ Jia - they also do not like the geoparquet 1.1 native encoding, since it
doesn’t have a fixed schema, and doesn’t support geometry (?)

-​ Joris - can you explain more about the requirement of a fixed
schema?

-​ Jia - what I understand from iceberg PMC is that the current
encoding in 1.1, if you use different point, line, polygon - it can
differ.

-​ Joris - to clarify, you only use those more specific types if you
know you only have points. If you know it’s not the case you don’t
use it.

-​ Milos - but it’s polymorphism, the child types aren’t converted to
one another. One is a collection of tuples, one is a collection of
collection. So that gets complicated. What they want is a single
fixed encoding.

-​ Joris - if you want those types then you just need those. There’s
clearly a big benefit for points.

-​ Matt - for a given column you want to define a type.
-​ Milos - a predicate can generate a mixture of types, the

output can be point / multipoint, depending on the system.
So you could end up with all types of geometry.

-​ Matt - how do you solve this in geo?
-​ Postgis / sedona just allow different rows to have

different geometry.
-​ Joris - it’s true 1.1 spec only included specific types. But nothing

prevents us (and have been discussing) to have an additional type
that represents a geometry or geometry collection that supports all
those types. If you know your operations might return various
types you can use the generic one.

-​ Joris on Arrow / GeoArrow

-​ At core arrow is specification for how to represent tabular data in memory. If you
consider an array in memory that’s a buffer and you point at the start of the buffer
then every library understands it. Arrow is nothing more than that, just for more
complex data.

-​ There’s lots of functionality in the core arrow libraries, which sometimes makes it
a bit more complicated.

-​ So many languages have arrow implementations. Since it’s the same format in
memory you get no deserialization / 0 copy transfer between languages.

-​ It’s actually a collection of buffers. All arrow types have a validity bitmap, that’s
just ‘where are your nulls’.

-​ So arrow defines data types?
-​ Yes - arrow spec, format, and then all the implementations.

-​ GeoArrow is an extension type. Which is some underlying existing type in the
arrow spec, and you add a little bit of metadata with a specific key, and then you
can define in your own library how you want to handle that extension type. That
extension type can pass through any system that understands arrow, even if it
doesn’t understand the extension.

-​ So GeoArrow is implemented as a series of extension types. It defines that set,
which name to use, and which metadata.

-​ There are two big groups
-​ - serialized formats (wkb or wkt), but you can still annotate them with an

extension type. So if you transfer arrow data, even if it’s using wkb, you
can attach that information, like about the coordinate referenced system.
Just uses binary type in arrow.

-​ You’re using WKB with CRS? Not EKWB? Only supports proj?
-​ Lots of discussion in GeoParquet. In GeoArrow CRS key should

have projjson. But not sure if we merged that PR. For GeoArrow
we want to be more flexible - you might read data from
somewhere that has a CRS description that’s not in projjson. So
we still want to pass along that information.

-​ Native formats, where we store raw coordinates, with a nested list of lists,
depending on type. So those are geometry type specific. And have been
discussing one for geometry collection / geometry union.

-​ Javi - if arrow has all the type info do we need geoparquet?
-​ Matt - yes, they map to one another.

-​ Dewey - 2 things going on in geoarrow
-​ Get data from one place to another. Keep everything geo, so it’s not

dropped. That’s where CRS at the type level comes in. That’s why
parquet having a geometry type is great, to be sure the crs wouldn’t get
dropped. Data would pass right through.

-​ Also provides better options for dealing with points, because binary for
points is just unimportant.

-​ Milos - big advantage of EWKB. So keeping it as mandatory part
of geometry is very important.

-​ Dewey - valid use case on satellite data, where each is a different
UTM zone.

-​ Jia - what we do is crs in each, but bounding box is always wgs
84. Helps with performance.

-​ Jia - GeoArrow is not in Arrow spec, right?

-​ Matt. Yes - there are a few extension types that are canonical in the arrow
spec. Great example is UUID. It’s a canonical extension type - fixed
binary, 16. Not a type in the built in arrow sense, but everyone agrees. So
we have some things that are canonical in the community in the spec, and
then others are ‘do whatever you want’, but all will pass through.

-​ Jia - ongoing extension to allow extension type, which would help the ‘big
geo to parquet’ problem.

-​ Javi - what’s the overall idea / ideal.

-​ Matt - ideally you have geometry types in iceberg spec, with defined geometry
types in geoparquet, defined in geoarrow. ANd you have ADBC driver that can
query Snowflake, use GeoArrow types to return from Snowflake’s geometry type,
that stream of arrow record batches can go where ever it needs to. And then it
could write to iceberg / geoparquet. Everyone agrees how to represent it at these
levels. Then any system that wants to read from any of those then data transfer
is in geoarrow.

-​ What does this require at each?
-​ We have geoarrow - we don’t need to have a canonical extension

type. Only benefit of ‘canonical’ extension type is to give incentive
/ reason for others. Not required.

-​ CH - is it a goal to be a canonical extension type?
-​ Joris / Matt - no, because the canonical extension type is

new, so we’d have to change the name. But it’s listed on
the main ‘extension’ page.

-​ Dewey - one weakness is the ‘geoarrow’ community is that
the governance is ‘weak’. It’s just kyle/dewey/Joris. So it
may be good to have it on the canonical list to give some
assurance that the PMC is going to maintain. (general
agreement from others that would be better).

-​ Javi - we could focus on well known binary. And have
iceberg work with that. Lots of agreement.

-​ Joris - terminology is not always clear. But most practical
usage of GeoArrow is with the well known binary type. But
we use geoarrow to refer to the native type. But if you ask
GDAL to export data into arrow format it will give you a
geoarrow well known binary type. But the fact it preserves
the information is the value of it, even though it’s using
WKB.

-​ Milos - ideal state is you have an object that is full self contained, so a column
represents itself, and naming convention drives that behavior. If you have a
parcel with a house, and you have geometries for parcel and building, then it’s
difficult - what does WKB mean. Schema level conventions are good, since
they’re quicker. That’s important, with arrow you keep appending buffers, so
there’s not a big tax.

-​ Matt - because arrow represents complex types you could have an
extension type as a ‘struct has these fields’.

-​ Milos - perhaps a ‘cloud native representation type’ - always start with
bounding box, follow by CRS, follow by lines.

-​ Matt - for type, the representation could be ‘struct of these types with
these names and these children’. Then parquet has structs, iceberg has
structs. Then expected layout of new type is complex definition is
particular fields with particular types. This is ‘geometry blah’, and we’ve
defined its a struct of these fields.

-​ Javi - seems like we should have two tracks - one on WKB, one on more native types.
-​

-​

REQUIREMENTS:
​ -CHRIS: Enable data producers to distribute without having to create disgtributions for
parquet and iceberg.
​ -Support for all metadata we created on geoparquet where it matters.

BARRIERS:
​ -Apple wants something geoarrow cant do
​ -It is hard to get a new data type in Parquet
​ -

Other:
-Possible double track with WKB and geoarrow?

	Geoparquet in person meetup at Data + AI

