
LECTURE 1
Machine Learning: Learn from Data or experience
Supervised Learning: Access to labeled examples of the correct behavior
(Two types of problems here, Classification or Regression)
Unsupervised Learning: No Labeled Examples
Reinforcement Learning: Learning to maximize a reward system
Input Vectors: Representing images, audio as a vector (or matrix) of numbers.

KNN GOAL & NOTES - MOSTLY for Classification

-​ Goal is to classify the input x into which of the 1, 2, or 3, or.. N class it falls into
-​ What we do is read in the training data
-​ Then put the test data over it, and see for a particular x, what are it’s K closest

neighbours.
-​ “Closest” is defined by a measure, usually as Euclidean distance.

​ X(a) - X(b) = Sqrt(sum (x_j - x_i))
-​ The decision boundary between two classes, is be NON-linear with KNN

-​ KNN is hard to work with in High dimensions, or mislabelled data (you can solve this
by choosing more than 1 closest neighbour)

-​ KNN has a Hyperparameter K, which determines the number of closest neighbours
to choose.

-​ Always good to NORMALIZE your data when working with KNN to help reduce the
curse of dimensionality (basically working with high dimensions)

-​ Does all of its work at TEST time -- No learning required!

KNN ALgorithm:

-​ Find K samples {x,t} closest to x.
-​ Classify the input based on the majority of the neighbours it falls within.

HOW TO choose a good K?

-​ Small K:
-​ Good at capturing small fine grained patterns
-​ May overfit

-​ Large K:

-​ May underfit, fails to capture important irregularities
-​ Makes stable predictions by averaging over lots of examples

Validation and Test Set
-​ We want something to validate how well our model is doing, so we have a validation

set and a test set to keep track of this.
-​ If we are doing good in training set, but validation set is bad / not improving -- We are

over fitting our model
-​ If Validation accuracy > training accuracy -> Underfitting

Computational Costs

-​ O(ND)
-​ Sort distances O(N LOG N)
-​ Need to start entire dataset in memory

LECTURE 2

Linear Regression - Supervised learning model
- Make a prediction y given inputs, and with some weight matrix w.
- y = Wx + b → vectorized it is: y = w^t x
- To loss function (to see how well our model is performing during training) is:
predictions - the true value

-​ In vectorized notation, our predictions are just y = Xw
-​ Linear Regression (or MLR) have a closed form solution to find the weights W (The

parameters in this case)
-​ This closed form solution is:

-​ W = (X.Transpose() * X)^ -1 X.transpose * t

Polynomial Regression / Basis Expansion

-​ Sometimes we want to use a more “smooth” / “Curved” model to represent our data.
We can still do this with MLR / a linear model, (Note that is is Linear in Parameters,
for example the weight vector isn’t w^2 or w^3)

-​ We do this by applying NONlinear functions to our input data -- Such as making x^2,
or X^3, etc.

-​ NOTICE that you will have to featurize your train data (X), and the Test data (X).
-​ To find the weights, we can still use the closed form formula for W still! (As shown

above)
-​ The predictions also work in the same way as before, y = featurized(x) * W
-​ You can control the “smoothness” of the prediction by the degree of the polynomial,

i.e Degree =3,9,etc. (Value of M, the degree is a hyper parameter here and we can
tune it using validation).

L2 or L1 Regularization:

-​ Restricting the number of parameters of a model (M here) is a crude approach to
control the complexity of the model.

-​ SO we bring in a penalty Term, lambda, to penalize the weights by scaling them.

-​ If the weights are too big, and are making the model too complex -- We can “tune” it
by choosing a larger value of Lambda.

-​ Large values of Lambda penalize weights more, where as small lambda penalizes
less.

-​ For the least squares problem, the model now takes into account the y = Wx + b and
the penalized term. This is known as the ridge regression

-​ IF Lambda = 0, this would mean NO regularization, and we are back to least squares
-​ If lambda -> infinity, the coefficients would go close to 0.

Probabilistic Least Squares

GRADIENT DESCENT

The OTHER way to train your model: (Instead of direct closed form solution) would be
Gradient Descent:

-​ Weight updates are performed AFTER you compute the loss.
-​ The Pipeline is as follows: Prediction -> compute loss -> update weights -> repeat.

LECTURE 3

LINEAR Classification
-​ Same thing as Linear Regression, but now you pass the result through a SIGMOID to

be able to classify the output into one of the 2 classes.

-​ Geometric Picture for Linear Classification

Cross Entropy Loss

STOCHASTIC GRADIENT DESCENT

LECTURE 4

Classification
​ Binary: 2 targets
​ Multiclass: > 2 targets
One hot encoding:
​ Suppose t = {1,0,2}
​ One hot = {[0,1,0],[1,0,0],[0,0,1]}
Multi class classification vectorized: z = Wx+b

Softmax:
​

-​ Outputs positive & sum to 1 (like probabilities)

Cross entropy as loss function (log applied elementwise):

​
Softmax + cross entropy combined:

Neural nets Model:

Multilayer Perceptrons

-​ Feed-forward network (directed acyclic graph (no cycles))
-​ There’s also recurrent neural networks (can have cycles - we didn’t cover it in class)
-​ Fully connected layer: all input units connected to all output units
-​ Output units are a function of input units

-​ Theta is the activation function, like sigmoid etc

 Feature Learning

​ Feature detector: each first layer hidden unit which computes

Linear layer: the activation function of a layer is the identity

-​ Any sequence of linear layers can be equivalently represented as a single linear

layer

 Deep linear networks more expressive than linear regression
 Universal function approximators: multilayer feed-forward neural nets with nonlinear
activation function; they can approximate any function arbitrary well
 Limits:
​ Might need to represent exponentially large network
​ Finding weights to represent a given function?
​ Might overfit if you can just learn any function
​ We want a compact representation
Univariate chain rule (loss & derivatives)

Examples of forward and backward pass:

Computational cost of forward pass:

-​ One add-multiply operation per weight

-​

Computational cost of backward pass:

-​ Two add-multiply operations per weight

-​

Note: backward pass is about as expensive as two forward passes
For multilayer perceptron: cost is linear in the number of layers, quadratic in number of units
per layer
Note: backward prop used to train the overwhelming majority of neural nets today

-​ Algorithm much “fancier” than gradient descent use backprop to compute the
gradients

Note: backprop is believed to be neurally implausible (no connection to how the brain
works??)

LECTURE 5 AND LECTURE 6
​ ​ ​ ​
Please note, I tried my best to explain these concepts, sorry if I made any mistakes

Maximum Likelihood (In general):

●​ Consider a scenario in which you have multiple distributions, and you observe some
random variable X, maximum likelihood estimation is concerned with identifying the
distribution which most likely produced this data point.

●​ Recall a likelihood function is defined as follows:

o​
o​ Where F(x1) is essentially the distribution of X given parameter theta
o​ Maximum likelihood estimation is concerned with maximizing this likelihood

function.
●​ How do we maximize the likelihood function?

o​ Note: Ln(x) is a 1-1 increasing function of X;
o​ We can use this to simplify the likelihood function because it is easier to

differentiate a sum rather than a product

o​
o​ Now, we simply solve the following equation:

▪​

▪​ Then you check if the second derivative of the log-likelihood is less

than zero (to ensure that it is indeed a maxima) and you can then
conclude that theta is indeed a maximum likelihood estimate

▪​ Note: Bonner did not mention second derivatives; so on a test you can

skip taking the second derivative (I think?)

Another Person explaining MLE:

MLE is the base for this whole lecture

Two approaches to Classification:
Discriminative Approach:
Estimates the decision boundary directly from the training data.
Mapping INput to Output

Generative Approach:
Models the distribution of the inputs generated from the class.

o​ Recall, in Bayesian statistics, the parameter that we are estimating (θ) is considered a
random variable. Parameters are believed to be random variables that follow some
distribution.

o​ The distribution of a parameter is called the prior. We update this prior belief using

our observed data. i.e., generally, the heights of students at UofT will be between 5
and 7 feet. Our goal is to update this prior belief using new data.

o​ The posterior is the probability of the parameter (θ) given the new observations.

How do we calculate this posterior distribution?

o​ In this Bayesian approach first, we calculate the Class Likelihood (The likelihood for
the data observed, given the parameter) (The same as in MLE)

o​

o​ You then multiply this class likelihood by the prior and divide by the evidence.

o​

o​

Important Note: The posterior distribution is directly proportional to the
(Class likelihood x prior), hence if you are trying to maximize the posterior (C), you don’t
really have to calculate “evidence”

Bayesian Parameter Estimation

A supplemental example from STA261:
Consider the following;

Given this information, theta coming from the uniform distribution is your prior (previous
information about the parameter).
The dataset coming from the Bernoulli, this data is used to create the class likelihood
function.

 <- this is the class likelihood function creating by
multiplying n Bernoulli observations under the parameter theta.

Then, your posterior distribution is simply the following:

Now let us look at Bonner’s Coin Flip Example:

The distribution of the dataset is Bernoulli, hence the MLE is:

Now, we specify the prior.

Bonner states that we can utilize the beta distribution depending on the dataset:

Where, the gamma function (the greyed-out thing) can be ignored due to proportionality.

Finally, he computes the posterior distribution as follows:

Finally, he computes the posterior mean as follows.

Which in this case our predicted parameter theta.

Benefits of this approach:
Deals better with data sparsity (explained below)

Cons:
This is an integration problem, there aren’t really any comparable tools (like gradient
descent) for Bayesian parameter estimation.

Naïve Bayes -> (A different type of estimation)
A method of estimation that uses the Naïve bayes assumption.
Note, while we use the words “Class Likelihood and Prior”, here we simply use them to refer
to the formulas. In Naïve Bayes they do not function the same way as in the Bayesian
Parameter estimation we just did. Instead, the data is just used to make maximum likelihood
estimates.

How does one calculate Class Likelihood and Prior?

Recall the following:

Thus, the entire numerator of the posterior distribution formula is simply the second
formula seen here.

Naïve Bayes Learning

Let C be a class (0,1).

Where:

o​ In order to calculate them, we must make the Naïve Bayes Assumption, which
essentially states that data points are conditionally independent if they are
conditioned on a class label

o​ Then, you simply calculate as follows:

o​ This is your numerator.

How else does this naïve bayes assumption help us?

Basically, you calculate the MLE for every parameter in the dataset given every class C, and
this is your class likelihood function (for that specific class). Then for prediction you simply
punch in the X value for your different posterior estimates based on the different classes and
you choose the largest one.

(Calculating the Class Likelihood)

When you create the log likelihood of theta, under this naïve bayes class likelihood, it will
separate into independent terms for each feature, hence you can optimize the parameters
differently.

Now, you simply maximize the Bernoulli log-likelihood of labels.

In essence, you are simply calculating the MLE’s for each parameter given the dataset.

Where,

Then, to actually use this model to make predictions, you simply apply bayes rules and take
the largest output based on the different classes:

Issues with this:
When you have data that for example, which simply contains heads; the MLE estimates for
the parameter will lean towards heads. This is called data sparsity.

While we are using Bayes Rule, we are not using it in its full capacity to update our prior
beliefs. This is what we did earlier in Bayesian Parameter Estimation.

Benefits:
This is simply a optimization problem, where we can simply apply gradient descent.

Maximum A-posteriori Estimation (Different type of Estimation)

The goal is to find the most likely parameter -> BUT UNDER THE POSTERIOR!
However, this is simply a subset (approximation) of the full Bayesian parameter estimation,
since we are not actually getting the full posterior distribution, but rather finding one
(expected) parameter.

What happened?
We simply calculate our posterior distribution (as before) and we maximize it in terms of
theta, by taking a derivative, setting equal to zero and solving.

Now in most cases you would take a second derivative to check if it is indeed a maximum,
but Bonner did not mention this.

MLE VS MAP VS BAYESIAN
In most cases, (imo) full Bayesian will be the best because you are getting a distribution on
the data.

Gaussian Discriminant Analysis

In this, we simply assume that X comes from a normal distribution, this is your new class
likelihood function. And we find an MLE for the posterior distribution under this assumption.

Now, under this distribution, we simply calculate and maximize the log-likelihood function as
before (This would be the class likelihood):

Solving for this, gives us the mean of the sample data.

Again, in this case we choose the class with the highest posterior probability given class K.

However, to calculate this class K, we further take an MLE estimate on the posterior, using
the class likelihood we defined above.

If you wish to calculate the decision boundary between two classes, you can do this:

(I don’t think this would come up on exam personally) *

Note, This will form a quadratic Decision Boundary

However, after we calculate the MLE for the class posterior likelihood, you will end up with the
following closed form:

GDA vs Logistic Regression

General Conclusion for Generative Models

Types of Classification

Discriminative approach: estimate parameters of decision boundary/class separator
directly from labeled examples.
➔​ “How do I separate these classes?”
➔​ Learn p(t|x) directly

Generative approach: model the distribution of inputs generated from the class (Bayes
classifier).
➔​ What does each class “look” like?
➔​ Build a model of p(x|t) (Baye’s Rule)

Naive Bayes

➔​ Makes a strong assumption: probabilities are conditionally independent given a

class.
➔​ This simplifies a probability calculation to:

Learning

Training time: Estimate parameters using maximum likelihood.
Test time: Use Bayes’ theorem.

Prior

➔​ Using a uniform distribution for the prior makes no assumption on the class, but a

beta distribution can be used to add additional assumptions.

LECTURE 7
Principal Component Analysis

Unsupervised Learning: Motivating Examples

●​ Some examples of situations where you would use unsupervised learning:
○​ You want to understand how a scientific field has changed over time. You

want to take a large database of papers and model how the distribution of
topics changes from year to year. UBt what are the topics?

○​ You are a biologist studying animal behaviour, so you want to infer a
high-level description of their behaviour from video. You don’t know the set
behaviour ahead of time.

○​ You want to reduce your energy consumption, so you take a time series of
your energy consumption over time, and try to break it down into separate
components (when refrigerator, washing machine, etc. were operating or not)

●​ Common theme: You have some data, and you want to infer the structure underlying
the data.

●​ This structure is latent, which means it is not observed.
●​ Example: Determine groups of people in an image of people lined up:

○​ Based on clothing styles
○​ Gender, age, etc.

●​ Example: Determine moving objects in videos.

Overview:

●​ Today we’ll cover the first unsupervised learning algorithm for this course: Principal
Component Analysis (PCA)

●​ PCA is a dimensionality reduction method.
●​ Dimensionality reduction: Mapping the data to a lower dimensional space.

○​ Saving computation and memory
○​ Reducing overfitting and achieve better generalization visualizing

●​ PCA is a linear model. It is useful for understanding many other similar algorithms.
○​ Autoencoders
○​ Matrix factorizations

●​ We use a lot of linear algebra in today’s lecture.
○​ Especially orthogonal matrices and eigendecompositions

Setup: Multivariate Inputs

●​ Setup: Given an i.i.d dataset D = } RD {𝑥(1),... 𝑥(𝑁) ⊂
●​ N instances/ Observations/ Examples

​

●​ Mean:

●​ Covariance:

Multivariate Gaussian Model

Mean and Covariance Estimators

●​ Observed data: D = } {𝑥(1),... 𝑥(𝑁)

●​ Recall that the MLS estimators for the mean and under the multivariate Gaussian µ ∑

model is given by (previous lecture)

○​ Sample mean: (quantifies (approximately) where data is
located)

○​ Sample Covariance: ​

■​ Quantifies (approximately) how your data points are spread

Bivariate Normal

Low Dimensional Representation
●​ Sometimes in practice, even though data is very high dimensional, its important

features can be accurately captured in a low dimensional subspace.​
​

​

●​ Find a low dimensional representation of data

○​ Computational benefits
○​ Interpretability, visualization
○​ Generalization

Projection onto a Subspace

●​ D = } RD {𝑥(1),... 𝑥(𝑁) ⊂

●​ Set to the sample mean of the data, µ
●​ Goal: Find a K-dimensional linear subspace S RD such that x(n) - is ⊂ µ

“well-represented” by its projection onto a K-dimensional S.
●​ Recall: The projection of a point x onto S is the point in S closest to x. More on this

coming soon.

We are Looking for Directions

●​ For example, in a 2-dimensional problem, we are looking for the direction u1 along

which the data is well represented.
●​ DIfferent interpretation of “well represented”:

○​ (1) Direction of highest variance
○​ (2) Direction of minimum difference after projection

●​ It turns out they are the same.

Euclidean Projection

●​ Here, S is the line along the unit vector u (1- dimensional subspace)

○​ u is a basis for S: any point in S can be written as zu for some z.
●​ Projection of x on S is denoted by Projs(x)
●​ Recall: xTu = ||x|| ||u||cos() = ||x||cos() θ θ
●​ Projs(x) = xTu u = ||x||u •

​ = length of proj direction of proj •

 General Subspace

●​ In general, S is not one dimensional (i.e., line), but a (linear) subspace with a
dimension K.

●​ In this case, we have K basis vectors : any vector y in S can be written 𝑢
1
, …, 𝑢

𝐾
∈ 𝑅𝐷

as y = for some z1, …, zK
𝑖=1

𝐾

∑ 𝑧
𝑖
𝑢

𝑖

​ ​ ​

●​ Projection of on this subspace is given by where zi = xTui 𝑥 ∈ 𝑅𝐷 𝑃𝑟𝑜𝑗
𝑆

𝑥() =
𝑖=1

𝐾

∑ 𝑧
𝑖
𝑢

𝑖

First Step: Center Data

●​ Directions we compute will pass through origin, and should represent the direction of

highest variance.
●​ We need to center our data since we don’t want the location of data to influence our

calculations. We are only interested in finding the direction of highest variance. This
is independent from its mean.

●​ ⇒ We are not interested in u3 above, we are interested in u1

Projection onto a Subspace

●​ Let be an orthonormal basis of the subspace S (a K-dimensional linear {𝑢
𝐾

}
𝑘=1

𝐾

subspace of RD

●​ Approximate each data point x as: ϵ 𝑅𝐷

○​ 1. Center (subtract the mean)
○​ 2. Project onto S

○​ 3. Add the mean back

​ ​ ​ ​ 𝑥
~

= µ
^

+ 𝑃𝑟𝑜𝑗
𝑆

𝑥 − µ
^()

​ ​ ​ ​ = + µ
𝑘=1

𝐾

∑ 𝑧
𝑘
𝑢

𝑘

●​ We also know: 𝑧
𝑘

= 𝑢
𝑘
𝑇 𝑥 − µ

^()
●​ Let be a matrix with columns 𝑈∈𝑅𝐷*𝐾 {𝑢

𝐾
}

𝑘=1

𝐾

●​ Then (Note that) 𝑧 = 𝑈𝑇 𝑥 − µ
^() 𝑧∈𝑅𝐾

●​ Also: (Note that) 𝑥
~

= µ
^

+ 𝑈𝑧 = µ
^

+ 𝑈𝑈𝑇 𝑥 − µ
^() 𝑥

~
∈𝑅𝐷

●​ Here is the projector onto S, and =1 𝑈𝑈𝑇 𝑈𝑇𝑈

●​ Note that x and have the same dimensionality. That is, they are both in RD. 𝑥
~

●​ But lives in a low dimensional subspace in 𝑥
~

𝑅𝐷

●​ Its low dimensional representation is 𝑧∈𝑅𝐾

●​ In machine learning, is also called the reconstruction of x. 𝑥
~

●​ Z is its representation or code

●​ If we have a K-dimensional subspace in a D-dimensional input space, then x and∈𝑅𝐷

 𝑧∈𝑅𝐾

●​ If the data points x all lie close to their reconstructions, then we can approximate
distances, etc. in terms of the same operations on the code vectors z.

●​ If K << D, then it is much cheaper to work with z than x.
●​ A mapping to a space that is easier to manipulate or visualize is called a

representation, and learning such a mapping is representation learning.
●​ Mapping data to a low-dimensional space is called dimension reduction.

Learning a Subspace

●​ How to choose a good subspace S?

○​ Need to choose D x K matrix U with orthonormal columns.
●​ Two criteria:

○​ Minimize the reconstruction error: Find vectors in a subspace that are closest
to data points.​
​

​𝑚𝑖𝑛 𝑈 1
𝑁

𝑖
∑ ||𝑥(𝑖) − 𝑥

~

(𝑖)

||2

○​ Maximize the variance of reconstructions: Fins a subspace where data has

the most variability.

 𝑚𝑎𝑥𝑈 1
𝑁

𝑖
∑ || 𝑥

~

(𝑖)

 − µ ||2

●​ The data and its reconstruction has the same means (exercise)!
●​ These two criteria are equivalent!

○​ We show that

 1
𝑁

𝑖
∑ ||𝑥(𝑖) − 𝑥

~

(𝑖)

||2 = 𝑐𝑜𝑛𝑠𝑡 − 1
𝑁

𝑖
∑ || 𝑥

~

(𝑖)

 − µ ||2

●​ Recall that = and 𝑥
~

(𝑖)

µ
^

+ 𝑈𝑧(𝑖) 𝑧(𝑖) = 𝑈𝑇(𝑥(𝑖) − µ
^

)
●​ Observation 1:

 | 𝑥
~ 𝑖()

− µ
^|

|
|

|
|
|
|

2

= 𝑈𝑧 𝑖()()
𝑇

𝑈𝑧 𝑖()() = [𝑧 𝑖()]
𝑇
𝑈𝑇𝑈𝑧(𝑖) = [𝑧 𝑖()]

𝑇
𝑧(𝑖) = | 𝑧 𝑖()| ||

2

Norm of centered reconstruction is equal to the norm of representation.

Recall: For any two (compatible) matrices, A and B, (AB)T = (BTAT)

Pythagorean Theorem

●​ Observation 1: || - ||2 = ||z(i)||2 𝑥
~

(𝑖)

µ
^

○​ Variance of reconstructions is equal to variance of code vectors:

■​ = (Exercise 1
𝑁

𝑖
∑ ||𝑥(𝑖) − 𝑥

~

(𝑖)

||2 1
𝑁

𝑖
∑ || 𝑧 (𝑖)||2 1

𝑁
𝑖

∑ 𝑧(𝑖) = 0)

●​ Observation 2: Orthogonality of - and - . 𝑥
~

(𝑖)

µ
^

𝑥
~

(𝑖)

𝑥(𝑖)

○​ (Two vectors a, b are orthogonal aTb = 0) ⇔

○​ Recall 𝑥
~(𝑖)

= µ
^

+ 𝑈𝑈𝑇(𝑥 𝑖() − µ
^

)

Because of the orthogonality of - and - , we can use the Pythagorean theorem 𝑥
~

(𝑖)

µ
^

𝑥
~

(𝑖)

𝑥(𝑖)

to conclude that

+ = || 𝑥
~

(𝑖)

 − µ ||2 ||𝑥(𝑖) − 𝑥
~

(𝑖)

||2 ||𝑥(𝑖) − µ ||2

By averaging over the data, we obtain

Therefore, projected variance = constant - reconstruction error.
Maximizing the variance is equivalent to minimizing the reconstruction error!

Principal Component Analysis
Choosing a subspace to maximize the projected variance, or minimize the reconstruction
error, is called principal component analysis (PCA).
Recall:

●​ Spectral Decomposition: a symmetric matrix A has a full set of eigenvectors, which
can be chosen to be orthogonal. This gives a decomposition A = Q QT, where Q is ∧
orthogonal and is diagonal. The columns of Q are eigenvectors, and the diagonal ∧
entries of are the corresponding eigenvalues. λ

𝑗
∧

●​ That is, symmetric matrices are diagonal in some basis.
●​ A symmetric matrix A is positive semidefinite iff each ≥ 0. λ

𝑗

●​ The matrix Q is an orthogonal matrix, i.e., it satisfies QTQ = QQT = I

●​ Consider the empirical covariance matrix:

●​ Recall, Covariance matrices are symmetric and positive semidefinite

●​ The optimal PCA subspace is spanned by the top K eigenvectors of

○​ More precisely, choose the first K of any orthonormal eigenbasis for
○​ The general case is tricky, but we will show this for K = 1.

●​ These eigenvectors are called principal components,
analogous to the principal axes of an ellipse.

Recap:
●​ Dimensionality reduction aims to find a low-dimensional representation of the data.
●​ PCA projects the data onto a subspace which maximizes the projected variance, or

equivalently, minimizes the reconstruction error.
●​ The optimal subspace is given by the top eigenvectors of the empirical covariance

matrix.
●​ PCA gives a set of decorrelated features.

Applying PCA to faces

●​ Consider running PCA on 2429 19x19 grayscale images (CBCL data)
●​ Can get good reconstructions with only 3 components
●​ PCA for pre-processins: can apply classifier to low-dimensional representation.

○​ Original data is 361 dimensional
○​ For face recognition PCA with 3 components obtains 79% accuracy on

face/non-face discrimination on test data vs. 76.8% for a Gaussian mixture
model (GMM) with 84 states.

●​ Can also be good for visualization.

Autoencoders
●​ An autoencoder is a feed-forward neural net whose job is to take an input x and

predict x.
●​ To make this non-trivial, we need to add a bottleneck layer whose dimension is much

smaller than the input.

Linear Autoencoders
Why autoencoders?

●​ Map high-dimensional data to two dimensions for visualization
●​ Learn abstract features in an unsupervised way so you can apply them to a

supervised task
○​ Unlabeled data can be much more plentiful than labeled data

●​ The simplest kind of autoencoder has one hidden layer, linear activations, and
squared error loss.

○​ L(x,) = || x - ||2 𝑥
~

𝑥
~

●​ This network computes = W2W1, which is a linear function. 𝑥
~

●​ If K D, we can choose W2 and W1 such that W2 W1 is the identity matrix. This isn’t ≥
very interesting.

●​ But suppose K < D:
○​ W1 maps x to a K-dimensional space, so it is doing a dimensionality

reduction.
●​ Observe that the output of the autoencoder must lie in a K-dimensional subspace

spanned by the columns of W2. This is because = W2z 𝑥
~

●​ We saw that the best possible (min error) K-dimensional linear subspace in terms of
reconstruction error is the PCA subspace.

●​ The autoencoder can achieve this by setting W1 = UT and W2 = U.
●​ Therefore, the optimal weights for a linear autoencoder are just the principal

components

Nonlinear Autoencoders

●​ Deep nonlinear autoencoder learn to project the data, not onto a linear subspace, but
onto a nonlinear manifold.

●​ This is a nonlinear dimensionality reduction.

​

●​ Nonlinear autoencoders can learn more powerful codes fro a given dimensionality,
compared with linear autoencoders (PCA)​

Nonlinear Autoencoders
Here’s a 2-dimensional autoencoder representation of newsgroup articles. They’re
colour-coded by topic, but the algorithm wasn’t given the labels.

LECTURE 8
K-Means and EM Algorithm

Overview
●​ In last lecture we covered PCA, which was an unsupervised learning algorithm

○​ Its main purpose was to reduce the dimension of the data
○​ In practice, even though data is very high dimensional, it can be well

represented in low dimensions
●​ This method relies on an assumption that data depends on some latent variables,

which are not observed. Such models are called latent variable models.
○​ For PCA, these corresponds to the code vectors (representation).
○​ Today’s lecture: K-means, a simple algorithm for clustering, i.e., grouping data

points into clusters
○​ Today’s lecture: Reformulate clustering as a latent variable model, apply the

EM algorithm

Clustering

●​ Sometimes the data form clusters, where samples within a cluster are similar to each
other, and samples in different clusters are dissimilar:​

​

●​ Such a distribution is multimodal, since it has multiple nodes, or regions of high
probability mass.

●​ Grouping data points into clusters, with no observed labels, is called clustering. It is
an unsupervised learning technique.

●​ Example: clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

○​ But topics are never observed (unsupervised).

Clustering Problem​

​

●​ Assume that the data points {x(1),...,x(N)} live in an Euclidean space, i.e., x(n) . ϵ 𝑅𝐷

●​ Assume that each data point belongs to one of K clusters.
●​ ASsume that the data points from same cluster are similar, ie.., close in Euclidean

distance.
●​ How can we identify those clusters and the data points that belong to each cluster?

K-Means Objective
Let’s formulate this as an optimization problem.

●​ K-means Objective: Find cluster centers and assignments to {𝑚
𝐾

}
𝑘=1

𝐾 {𝑟 (𝑛)}
𝑛=1

𝑁

minimize the sum of squared distances of data points to their assigned cluster {𝑥 (𝑛)}
centres.

○​ Data sample n = 1, …, N: x(n) (observed) ϵ 𝑅𝐷

○​ Cluster centre k = 1,..., K: mk (not observed) ϵ 𝑅𝐷

○​ Responsibilities: Cluster assignment for sample n: r(n) 1-of-K encoding ϵ 𝑅𝐾

(not observed)
●​ Mathematically:​

, where rk
(n) = I{x(n) is assigned to cluster k} e.g., r(n) = [0, …, 1, …,0]T.

●​ Finding an optimal solution is an NP-hard problem!

K-Means Objective

●​ Optimization problem:

●​ Since rk

(n) = I{x(n) is assigned to cluster k} (e.g. r(n) = [0, …, 1, …,0]T), the inner sum is
over K terms but only one of them is non-zero.

●​ For example, if data point x(n) is assigned to cluster k = 3, then rn = [0,0,1,0,...] and ​

How to Optimize? Alternating Minimization
Optimization problem:

●​ Problem is hard when minimizing jointly over the parameters {mk}, {r(n)}.
●​ But if we fix one and minimize over the other, then it becomes easy.
●​ Doesn’t guarantee the same solution!

Alternating Minimization (Optimizing Assignments)
Optimization Problem:

●​ Note:

○​ If we fix the centres {mk}, we can easily find the optimal assignments {r(n)} for
each sample n​

○​ Assign each point to the cluster with the nearest centre

■​ rk
(n) = {1 if k = arg minj || x(n) - mj ||2, 0 otherwise}

○​ E.g. if x(n) is assigned to cluster k, r(n) = [0,0,...,1, …, 0]T (only kth entry is 1)

Alternating Minimization (Optimizing Centres)

●​ If we fix the assignments {r(n)}, then we can easily find optimal centres {mk}.
○​ Set each cluster’s centre to the average of its assigned data points: ​

for l = 1, 2, ...K

●​ Let’s alternate between minimizing J({mk}, {r(n)}) with respect to {mk} and {r(n)}
●​ This is called alternating minimization.

K - Means Algorithm

High level overview of algorithm:
●​ Initialization: randomly initialize cluster centres
●​ The algorithm iteratively alternates between two steps:

○​ Assignment step: Assign each data point to the closest cluster
○​ Refitting step: Move each cluster centre to the mean of the data assigned to

it.

The K-Means Algorithm

●​ Initialization: Set K cluster means m1, …, mK to random values
●​ Repeat until convergence (until assignments do not change)

○​ Assignment: Optimize J with respect to {r}: Each data point x(n) assigned to
nearest centre​

○​ And Responsibilities (1-hot or 1-of-K encoding)​

●​ Refitting: optimize J with respect to {m}: Each centre is set to mean of data assigned

to it

Questions about K-Means

●​ Why does update set mk to mean of assigned points?
●​ What if we use da different distance measure?
●​ How can we choose the best distance?
●​ How to choose K?
●​ Will it converge?

Hard cases-unequal spreads, non-circular spreads, in-between points.
Why K-Means Converges

●​ K-means algorithm reduces the cost at each iteration
○​ Whenevr asn assignment is changed, the sum squared distances J of data

points from their assigned cluster centres is reduced.
○​ Test for convergence: If the assignments do not change in the assignment

step, we have converged (to at least a local minimum)

○​ This will always happen after a finite number of iterations, since the number of
possible cluster assignments is finite.​

○​
○​ K-means cost function after each step (blue) and refitting step (red). The

algorithm has converged after the third refitting step.

Local Minima
●​ The objective J is non-convex, (so coordinate descent on J is not guaranteed to

converge to the global minimum).
●​ There is nothing to prevent k-means getting stuck at local minima
●​ We could try many random starting points.

Soft K-means

●​ Instead of making hard assignments of data points to clusters, we can make soft
assignments. One cluster may have a responsibility of 0.7 for a data point and
anothe rmay have a responsibility of 0.3.

○​ Allows a cluster to use more information about hte data in the refitting step.
○​ How do we decide on the soft assignments?
○​ We already say this in multi-class classification:

■​ 1-of-K encoding vs softmax assignments.

Soft K-Means Algorithm:

●​ Initialization: Set K means {mk} to random values
●​ Repeat until convergence (measured by how much J changes):

○​ Assignment: Each data point n given soft “degree of assignment” to each
cluster mean k, based on responsibilities

○​ Refitting: model parameters, means, are adjusted to match sample means of

datapoints they are responsible for:

○​

Questions about soft K-means
Some remaining issues

●​ How to set ? β
●​ Clusters with unequal width and weight?

These aren’t straightforward to address with K-means. Instead we’ll reformulate clustering
using a generative model.
As , soft k-means becomes k-means! (Exercise!) β → ∞

A Generative View of CLustering

●​ Next: probabilistic formulation of clustering
●​ We need a sensible measure of what it means to cluster the data well.

○​ This makes it possible to judge different methods
○​ It may help us decide on the number of clusters.

●​ An obvious approach is to imagine that the data was produced by a generative model
○​ Then we adjust the model parameters using maximum likelihood i.e., to

maximize the probability that iw ould produce exactly the data we observed.

The Generative Model:

●​ We’ll be working with the following generative model for data D.
●​ Assume datapoint x is generated as follows:

○​ Given a cluster z from {1,... K} such that p(z=k) = π
𝑘

○​ p(x| z = k) = 𝑁(𝑥|µ
𝑘
, 𝐼)

Clusters from the Generative Model

●​ This defines joint distribution p(z,x) = p(z)p(x|z) with parameters {π
𝑘
, µ

𝑘
}

𝑘 = 1

𝐾

●​ The marginal of x is given by p(x) =
𝑧
∑ 𝑝(𝑧, 𝑥)

●​ p(z = k|x) can be computed using Bayes rule

This tells us the probability that x comes from the kth cluster.

The Generative Model

●​ 500 points drawn from a mixture of 3 Gaussians

Maximum Likelihood with Latent Variables

●​ How should we choose the parameters } ? {π
𝑘
, µ

𝑘
}

𝑘 = 1

𝐾

●​ Maximum likelihood principle: choose parameters to maximize likelihood of observed
data

●​ We don’t observe the cluster assignments z, we only see the data x

●​ Gvien data D = , choose parameters that maximize: {𝑥(𝑛)}
𝑛=1
𝑁

We can find p(x) by marginalizing out z:

Gaussian Mixture Model (GMM)
What is p(x)?

●​ This distribution is an example of a Gaussian Mixture Model (GMM) and k are π

known as the mixing coefficients.
●​ In general, we would have difference covariance for each cluster, i.e., p(x| z = k) =

. For this lecture, we assume = I for simplicity. 𝑁(𝑥|µ
𝑘
, 𝐼) ∑

𝑘

●​ If we allow arbitrary covariance matrices, GMMs are universal approximators of
densities (if you have enough Gaussians). Even diagonal GMMs are universal
approximators.

Visualizing a Mixture of Gaussians - 1D Gaussians

Visualizing a Mixture of Gaussians - 2D Gaussians

Fitting GMMs: Maximum Likelihood
Maximum likelihood objective:

●​ How would you optimize this with respect to parameters ? {π
𝑘
, µ

𝑘
}

○​ No closed-form solution when we set derivatives to 0
○​ Difficult because sum inside the log

●​ One option: gradient descent → can we do better?
●​ Cna we have closed-form update?

Maximum Likelihood

●​ Observation: If we know z(n) for every x(n), (i.e., our dataset was DComplete =

, the maximum likelihood problem is easy:​{(𝑧(𝑛), 𝑥(𝑛))}
𝑛=1
𝑁

●​ We haven’t observed the cluster assignments z(n), but we can compute p(z(n)|x(n))

using Bayes rule
●​ Conditional probability (using Bayes rule) of z given x

How can we fit a mixture of Gaussians?

●​ This motivated the Expectation-Maximization Algorithm, which alternates between
two steps:

○​ 1. E-Step: Computer the posterior probabilities r(n)
k = p(z(n) = k | x(n)) given our

current model, i.e., how much do we think a cluster is responsible for
generating a datapoint.

○​ 2. M-step: Use the equations on the last slide to update the parameters,
assuming r(n)

k are held fixed - change the parameters of each Gaussian to
maximize the probability that it would generate the data it is currently
responsible for.

○​

What Just Happened: A Review

●​ The maximum likelihood objective was hard to optimize.
𝑛 = 1

𝑁

∑ 𝑙𝑜𝑔 𝑝(𝑥(𝑛))

●​ The complete data likelihood objective was easy to optimize:

●​ ​

●​ We don’t know z(n)’s (they are latent) so we replaced I{z(n) = k} with responsibilities rk
(n)

= p(z(n) = k | x(n)).
●​ That is, we replaced I{z(n) = k} with its expectation under p(z(n) | x(n)). E-Step

●​ We ended up with the expected complete data log-likelihood:​

●​

Which we maximized over parameters (M-step) {π
𝑘
, µ

𝑘
}

𝑘

●​ The EM algorithm alternates between
○​ The E-step: computing the rk

(n) = p(z(n) = k | x(n)) (ie. expectations E[I{z(n) =
k}|x(n)]) given the current model parameters π

𝑘
, µ

𝑘

○​ The M-step: update the model parameters to optimize the expected π
𝑘
, µ

𝑘

complete data log-likelihood.
Relation to K-Means

●​ The K-means algorithm:

○​ 1. Assignment Step: Assign each data point tot ehc closest cluster
○​ 2. Refitting Step: move each cluster center tot he average of the data

assigned to it.
●​ The EM Algorithm:

○​ 1. E-step: Compute the posterior probability over z given our current model
○​ 2. M-Step: Maximize the probability that it would generate the data it is

currently responsible for.
○​ Can you find the similarities between the soft k-Means algorithm and EM

algorithm with shared covariance ? 1
β 𝐼

○​ Both rely on alternating optimization methods and can suffer from bad local
optima.

Further Discussion

●​ We assumed that the covariance of each Gaussian I was to simplify the math. This
assumption can be removed, allowing clusters to have different spatial spreads. The
resulting algorithm is still very simple.

●​ Possible problems with maximum likelihood objective:
○​ Singularities: Arbitrarily large likelihood when a Gaussian explains a single

point with variance shrinking to zero
○​ Non-convex

●​ EM is more general than what was covered in this lecture. Here, EM algorithm is
used to find the optimal parameters under the GMMS.

GMM Recap

●​ A probabilistic view of clustering. Each cluster corresponds to a different Gaussian.
●​ Model using latent variables.
●​ General approach, can replace Gaussian with other distributions (continuous or

discrete)
●​ More generally, mixture models are very powerful models, i.e., universal distribution

approximators.
●​ Optimization is done using the EM algorithm.

Lecture 12) Decision Trees:

-​ Depending on question: the root of decision tree should hold the most information
regarding what the question asked:

-​ Ex:
-​ Question: should i pick a cat or dog as a pet

-​ Then from their its yes or no questions

Animal

​ ​ ​
​ ​ ​ Cat​ ​ Dog
​ ​ ​ ​
Internal nodes : test attributes
Branching is determined by attribute value
Leaf nodes are outputs (predictions)
​ ​

Discrete Trees:
​ -boolean and can be expressed in truth table
Continuous Trees:
​ -Can approximate any function arbitrarily closely

Classification Tree:
​ -Discrete output
Regression Tree:
​ -continuous output

Greedy Heuristic: ​

1)​ Start with empty tree
2)​ Split on “best attribute” which means get the one with most value depending on

question
3)​ Recursively do the bs on subpartitions
4)​ We stop when we successfully have reached a conclusion that we need

How to choose “best”:

-​ Loss: misclassification error
-​ Accuracy Gain is L(R) =

Example of AG:

How da fuck do you calculate uncertainty?

​ Entropy: measure of expected surprise or how uncertain we are drawing that value

​
​ Example:
​ ​

Entropy unit is BITS,
​ Fair coin flip is 1 bit of entropy

High Entropy

-​ Variable is like a uniform distribution
-​ Flat histogram
-​ Values sampled are less predictable

Low Entropy

-​ Distribution of variable has peaks and valleys
-​ Histogram has lows and highs
-​ Values sampled from it are more predictable

Calculation of joint distribution:

​
Condition entropy:

Discrete Case: Conditional Entropy:

-​ H is alway non negative
-​ Many more on slide 23

INFORMATION GAIN (IG)

-​ How much info gain in Y due to X (mutual info of Y and X)

●​ If X is completely uninformative about Y : IG(Y|X) = 0
●​ If X is completely informative about Y:IG(Y|X)=H(Y)

Decision Tree Algorithm:

●​ Simple, greedy, recursive approach, builds up tree node-by-node
●​ Start with empty decision tree and complete training set

○​ Split on the most informative attribute, partitioning dataset
○​ Recurse on subpartitions
○​

●​ Possible termination condition: end if all examples in current subpartition
share the same class

Good Tree?

●​ Not too small: need to handle important but possibly subtle distinctions in data
●​ Not too big:

○​ Computational efficiency (avoid redundant, spurious attributes)
○​ Avoid over-fitting training examples
○​ Human interpretability“

●​ Occam’s Razor”: find the simplest hypothesis that fits the observations
○​ Useful principle, but hard to formalize (how to define simplicity?

●​ We desire small trees with informative nodes near the root

Problems:
●​ You have exponentially less data at lower levels

●​ A large tree can overfit the data

●​ Greedy algorithms don’t necessarily yield the global optimum

●​ Mistakes at top-level propagate down tree

Advantages of decision trees over k-NN

●​ Good with discrete attributes
●​ Easily deals with missing values (just treat as another value)
●​ Robust to scale of inputs; only depends on ordering
●​ Good when there are lots of attributes, but only a few are
●​ important
●​ Fast at test time
●​ More interpretable

Advantages of k-NN over decision trees

●​ Able to handle attributes/features that interact in complex ways
●​ Can incorporate interesting distance measures, e.g., shape contexts.

	Principal Component Analysis
	Autoencoders

	K-Means and EM Algorithm
	Lecture 12) Decision Trees:

