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Overview: 

This paper presents and analyzes a wide range of statistical techniques that can be applied to 
FIRST Robotics Competition (FRC) and FIRST Tech Challenge (FTC) tournaments to rate the 
performance of teams and robots competing in the tournament.   

The well-known Offensive Power Rating (OPR), Combined Contribution to Winning Margin 
(CCWM), and Defensive Power Rating (DPR) measures are discussed and analyzed.   

New measures which incorporate knowledge of the opposing alliance members are discussed 
and analyzed.  These include the Winning Margin Power Rating (WMPR), the Combined Power 
Rating (CPR), and the mixture-based Ether Power Rating (EPR). 

New methods are introduced to simultaneously estimate separate offensive and defensive 
contributions of teams.  These methods lead to new, related simultaneous metrics called sOPR, 
sDPR, sWMPR, and sCPR. 

New MMSE estimation techniques are introduced.  MMSE techniques reduce overfitting 
problems that occur when Least Squares (LS) parameter estimation techniques are used to 
estimate parameters on a relatively small data set.  The performance of LS and MMSE 
techniques is compared over a range of scenarios. 

All of the techniques are analyzed over a wide range of simulated and actual FRC tournament 
data, using results from the 2013, 2014, and 2015 FRC seasons. 
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Introduction 

FIRST is a non-profit organization that sponsors four levels of robotics competitions for youth: 
FIRST Robotics Competition (FRC), FIRST Tech Challenge (FTC), FIRST Lego League (FLL) 
and Junior FIRST Lego League (JrFLL).   

In FRC and FTC, teams build robots and compete in matches where alliances of multiple robots 
face off against each other.  In FRC the alliances have 3 teams and in FTC the alliances have 2 
teams. The remainder of the discussion in this paper focuses on the analysis of FRC 3 v. 3 
matches but the analysis can be easily modified to accommodate FTC 2 v. 2 matches. 

During a tournament, over a season, and from season to season, teams play many matches.  
Many in the FIRST community are interested in computing statistics to measure the absolute 
and relative performance of different robots and different teams.  This paper describes many 
different methods that can be used to model performance and estimate model parameters.  The 
paper also evaluates the performance of different methods in different scenarios. 

Notation and Conventions 

Scalars are shown italicized like R.  Vectors and matrices are shown in bold like O.  Vector and 
matrix transpose is denoted with a trailing apostrophe “ ‘ “ like O’.  

Measurements of the offensive contribution of a team are indicated by some form of O or O.  
Offensive contributions usually have an average, Oave, of ⅓ of the average match score in a 
tournament. 

Measurements of the defensive contribution of a team are indicated by some form of D or D.  
Defensive contributions described in this paper usually have an average, Dave, of 0, and 
usually a positive contribution corresponds to a positive outcome for a team (i.e., a D of +5 
means that a team’s defensive contribution is 5 points better than average). 

Measurements of the contribution of a team to its alliance’s overall Winning margin (i.e., their 
alliance’s score minus their opposing alliance’s score) are indicated by some form of W or W.  
Winning margin contributions usually have an average, Wave, of 0. 

Measurements of the Combined contribution of offense and defense of a team to its alliance’s 
performance are indicated by some form of C or C.  Combined contributions in this paper are 
usually a measure of O + D, and as a result Combined contributions usually have an average 
Cave = Oave.  Combined contributions are often related to the Winning margin contributions by 
the relationship W = C - Oave. 

Parameter estimates (scalar or vector) are underlined, like Oave. 

MMSE-based parameter estimates (scalar or vector) are “hatted,” like . 𝑂
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Linear Match Models 

Full Model Equation for Offense 

Each FRC match produces two outcomes: the Red alliance final score and the Blue alliance 
final score .  In most seasons, the alliance with the larger score is also declared the match 1

winner. 

The linear match model used in this paper is: 
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Teams i, j, and k are on the Red alliance and teams l, m, and n are on the Blue alliance.  Oi is 
the offensive contribution of team i and Di is the defensive contribution of team i.  In both cases, 
a positive value is beneficial to a team: a larger positive value of Oi for team i means that their 
alliance will score more points, and a larger positive value of Di means that their opposing 
alliance will score fewer points.  R and B are the final Red and Blue alliance scores.   

Nr and Nb are noise.  These noise terms can model either match-to-match variations in noise or 
noise due to nonlinearities in actual match play.  The match noise is modeled in this paper as 
having constant variance from match to match.  This can be viewed either as variation due to 
individual match randomness or as constant variation produced by teams themselves (e.g., 
drivers not driving exactly the same way, etc.).  It may be of interest to model the match noise as 
being produced by the teams and the team-based match noises NOT all having the same 
variability (e.g., team 1 always scores 1000 points or 0 points while team 2 always scores 10 
points or 0 points).  This paper does not address this question. 

In vector-matrix form, the above equations for teams 1-6 can be written as 

1 Outcomes on parts of the matches may also be available, like Red and Blue autonomous scores, teleop 
scores, end-game scores, penalty scores, etc.  Most of the analyses in this paper can also be applied 
individually to these scores as if they were final match scores, and can be used to evaluate the 
performance of teams in these subareas as well.  The FTC android apps “Watch FTC Tournament” and 
“FTC Online” do exactly that for FTC tournaments. 
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This form can be expanded for a full tournament with m matches and t teams.  Define Ar as the 
m x t matrix with i,jth element equal to 1 if team j is on the Red alliance in match i and 0 
otherwise, Ab as the m x t matrix with i,jth element equal to 1 if a team is on the Blue alliance in 
match i and 0 otherwise, Mr as the m-length vector of the Red alliance scores, and Mb as the 
m-length vector of the Blue alliance scores.  Then, 

 

or 

 

“Full Model Equation for Offensive Scores” 

Mo is the full vector of offensive match scores, Ao is the matrix describing which teams played 
offense producing a given match score (with an i,jth element of 1 if team j was on offense 
leading to match score i), Ad is the matrix describing which teams played defense producing a 
given match score (with an i,jth element of 1 if team j was on defense leading to match score i), 
O is the vector of team offensive contributions, D is the vector of team defensive contributions, 
and No is the full vector of offensive match noise values. Mo and No are 2m-length vectors, Ao 
and Ad are 2m x t matrices, O and D are t-length vectors. 
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Given a model with values of O and D, exactly the same match outcomes are produced with the 
related model O+K and D+K, where K is an arbitrary scalar constant.  As a matter of 
convention, this paper normalizes models like this or estimates of the parameters O and D by 
computing the mean of all of the elements of D and then subtracting that mean from all 
elements of O and D.  This produces the interpretation of elements of O as the expected 
contribution a team makes to its alliance’s match scores when playing against average defense, 
and the interpretation of elements of D as the expected contribution a team makes against its 
opposing alliance’s match scores, relative to the average defense.  This is discussed further in 
later sections. 

Full Model Equation for Winning Margin 

Similarly, a linear model for the winning margin R-B can be formed by taking the difference of  
the previous equations as 
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If a team’s contribution to their winning margin is defined as Wi = (Oi - Oave) + Di , then the 
expression can be similarly rewritten as: 

 

The Oave terms are included to make W have zero mean, and they cancel each other out in the 
above equation.  For a full tournament, the matrix-vector equivalent equation becomes 

 

or 

 

“Full Model Equation for the Winning Margin” 

Mw = Mr - Mb is the vector of winning margins with elements that are positive if Red won a 
match and negative if Blue won.  Aw = Ar - Ab is a matrix describing which teams played in a 
given match (with i,jth element of 1 if team j was on Red in match i, -1 if team j was on Blue in 
match i, and 0 otherwise), W is the vector of winning margin contributions, and Nw = Nr - Nb is 
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the vector of winning margin noise values.  If Nr and Nb are independent and identically 
distributed, elements of Nw have twice the variance of elements of No. 

Mw and Nw are m-length vectors, half the size of the corresponding Mo and No vectors.  Aw is 
an m x t matrix, half the size of the corresponding Ao and Ad matrices. 

 

Measures of Model Performance 

FIRST teams are interested in statistics that can be used for the following purposes: 

●​ Help scout upcoming matches during a tournament. 
●​ Help select alliance members for elimination rounds. 
●​ Compare teams across different tournaments and different seasons. 
●​ Help scout teams prior to a tournament. 
●​ Predict match outcomes prior to a match. 

To achieve these purposes, the FIRST community has developed a number of statistical 
estimation methods to estimate future match outcomes Mo and Mw and to estimate teams’ 
offensive, defensive, and winning margin contributions, O, D, and W. 

Some ways of measuring the performance of a model are: 

1.​ Compute the difference between the actual offensive match scores and the match 
scores predicted by a given model.  Usually this is measured with unweighted squared 
error as: Eo = (Mo - Mo)’ (Mo - Mo).  Mo is the measured vector of offensive match 
scores and Mo is the predicted match scores from the model, and X’ is the transpose of 
X.   

2.​ Compute the difference between the actual winning margins and the winning margins 
predicted by a given model, as: Ew = (Mw - Mw)’ (Mw - Mw). 

3.​ Compute the probability that a given model correctly predicts the outcome of a match 
(i.e., whether Red scored more than Blue or vice versa).  This is linearly related to the 
following expression: Es =  (sign(Mw) - sign(Mw) )’ (sign(Mw) - sign(Mw)), where sign(X) 
has elements that are +1 if Xi is positive and -1 if Xi is negative. 

4.​ For simulated tournaments where the underlying model parameters are known, compute 
the difference between the estimated model parameters and the actual underlying model 
parameters.  For example, given a vector of parameters O and an estimate of the model 
parameters O, measure the error Ep = (O - O)’ (O - O). 

The results section of this paper usually normalizes these measures by the variance of the 
original vector being predicted, and converts the result into a percentage. 
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Estimating Model Parameters Using Averages 

Offense - Average of Match Scores 

One simple way to measure a team’s offensive power is to simply average their alliance’s match 
scores.  In matrix form, this can be written as: 

 

Ao’ Mo is just the vector of the sum of the match scores for each team, and the diagonal matrix 
in front of it has i,ith elements equal to 1/# of matches played by team i. 

Note that this measure is a vector with ith element equal to the average match score of the ith 
team, as opposed to Oave which is the scalar average of all match scores for all teams. 

Limiting Behavior 

If the data were truly generated using the model equation for offense and if a team plays an 
equal number of matches with and against the other teams, as the number of matches played 
and the number of teams participating get large, this metric approaches: 

 

The final equation holds because the elements of D have been normalized to have a mean of 
zero as previously discussed.  2

An estimate using the average of match scores that approaches a team’s true underlying 
contribution is then: 

 

Defense - Average of Opponent’s Match Scores 

One simple way to measure a team’s defensive power is to simply average their opponent’s 
match scores.  In matrix form, this can be written as: 

2 If the number of matches get large but the number of teams remains fixed, then the Oave scalar term in 
the equation is replaced by a vector with the ith element equal to the average of the elements of O of all 
of the teams except team i, which can usually be well approximated by Oave unless a team is a large 
outlier.   As an example, in a tournament with 50 teams where team 1 always scores 100 points and the 
other 49 teams always score 0 points, the true Oave of all teams is 2 points, but the average of the 
elements of O for all teams except team 1 is 0 points and the comparable average for all of the other 
teams is 100/49. 
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This measure is large for a team playing poor defense and small for a team playing better 
defense. 

As in the calculation of the average of a team’s match scores, Ad’ Mo is just the vector of the 
sum of the opponent’s match scores for each team, and the diagonal matrix in front of it has i,ith 
elements equal to 1/# of matches played by team i. 

Limiting Behavior 

If the data were truly generated using the model equation for offense and if a team plays an 
equal number of matches with and against the other teams, as the number of matches played 
and teams participating get large, this metric approaches: 

 

Since 3Oave is just the average match score, this metric approaches the average match score 
minus a team’s defensive contribution . 3

An estimate using the average of opponent’s match scores that approaches a team’s true 
underlying defensive contribution is then: 

 

 

Winning Margin - Average of Match Scores minus Opponent’s Match Scores 

One simple way to estimate a team’s contribution to their alliance’s winning margins is to 
average the winning margins in the matches a team plays in, or   

 

Limiting Behavior 

Under the same assumptions of limiting behavior as in previous sections,  

 

3 Again, technically the scalar Oave should instead be a vector with the ith element equal to the average 
offensive contribution of all teams except team i, but this is usually well approximated by Oave unless a 
team is a large outlier as discussed in the previous footnote. 
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Estimating Model Parameters Using Least Squares Methods 

This section describes the different methods that are used to estimate different sets of model 
parameters.  Their strengths and weaknesses are evaluated and discussed in following 
sections. 

Offense 

Offensive Power Rating (OPR) 

A team’s average match score can be artificially increased if that team happens to play with 
stronger teams than average or artificially decreased if that team happens to play with weaker 
teams than average. 

One way to correct for alliance partner strength is by finding the values of O in the model for Mo 
that minimize Eo, which is equivalent minimizing No’ No.  This assumes that the defensive 
contribution D is either 0, much smaller than No, or simply incorporated in No as additional 
noise.  This is like using the simplified model for Mo with D=0 shown below: 

 

“Partial Model Equation for Offense” 

Finding the value of O that minimizes Eo in a model where D=0 is a simple least squares 
problem, and the solution is 

 

 

Winning Margins and Combined Contributions 

Combined Contribution to Winning Margin (CCWM) 

The CCWM measure is computed by essentially finding the set of winning margin contributions 
that predict an alliance’s winning margin using knowledge of the alliance’s partners but not 
knowledge of the alliance’s opponents.  This is like using the simplified model for OPR to predict 
winning margins rather than offensive scores, or  

 

“Partial Model Equation for the Winning Margin” 
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And where Mw’ has the form : 4

 

Mw’ is a 2m-length vector like Mo, and unlike Mw which is an m-length vector.  Note also that 
Ao is used in the partial model equation for the winning margin, not Aw!  So there is no 
knowledge of opposing alliance members used in the calculation. 

The least squares solution is 

 

This is identical to the form of the OPR solution except that the M vector used is different.   

Winning Margin Power Rating (WMPR) 

Similar to the computation for OPR, the winning margin contributions can be estimated by 
finding the values of W in the full model for Mw that minimizes Ew, which is equivalent to 
minimizing Nw’ Nw.  This leads to the least squares solution of 

 

This is identical to the form of the OPR equation except that the pseudo-inverse of Aw’ Aw is 
used instead of the normal inverse.  This is necessary because Aw’ Aw is not invertible, 
because any constant mean term K can be added to all of the elements of W simultaneously to 
produce the same set of predicted winning margins.  Or, the set of WMPR values for a given 
tournament always has an arbitrary mean offset.  While the mean term of all of the WMPRs can 
be arbitrarily chosen, the relative WMPRs between the teams in a tournament is the same 
regardless of what value is chosen for their mean. 

The pseudo-inverse solution shown above finds the minimum-norm solution which results in W 
having a mean of 0.   

Combined Power Rating (CPR) 

For comparing across tournaments, it can be useful to normalize the W values so they have a 
mean equal to Oave.  This provides for comparisons on the same scale as the offensive 
measures, but the elements include offensive and defensive components.   

4 M_(w’) is using the “prime” symbol ‘ to show it is different vector from Mw.  This is different from the 
transpose of Mw, denoted by M’w.  Sorry for the confusing notation. 
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The CPR is essentially this: 

 

This is a C-type vector because its mean is Oave, but it incorporates contributions of both 
offense and defense.  For example, in a tournament where the average offensive match score 
divided by 3 was 50, a team with a CPR of 60 would contribute 10 more points than the average 
team to their alliance’s winning margin, through a combination of above average offense and 
defense.  In a tournament with little-to-no defense, this would be similar to a team having an 
OPR of 60. 

Defense 

Defensive Power Rating (DPR) 

The DPR estimate is computed as: 

 

Another equivalent equation for the computation is: 

 

In both equations, the matrix being inverted is a matrix with i,jth element equal to the number of 
times teams i and j played on the same alliance.  The diagonal elements are the number of 
matches played by each team, and the off diagonal elements count the number of partnered 
matches between the teams.  Note that this is same same regardless of whether A’o Ao or A’d 
Ad is used, since the number of times teams play offense together is the same as the number of 
times teams play defense together.  In other words, A’o Ao = A’d Ad = Ar’ Ar + Ab’ Ab. 

In both equations, the vector term to the right of the matrix inverse is the sum of the match 
scores of each team’s opponents in the tournament.  Again, they are two different expressions 
for the same result. 

This is essentially using the OPR/ CCWM formulation to try to predict the scores of the opposing 
alliance using only knowledge about a given team’s alliance partners and no knowledge of the 
teams actually playing on the opposing alliance!  As a result, DPR often incorporates more 
knowledge about the average strength of a team’s opposing alliances than it does incorporate a 
team’s defensive strength or weakness.  In a game with little-to-no defense, the DPR can be 
used purely as a measure of how lucky or unlucky a given team was by having weaker or 
stronger opponents than average. 
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Also, the DPR estimates have an opposite sign from the definition of defensive contribution 
used in this paper, meaning that a small DPR is good, as it signifies a team’s opposing alliances 
had lower average scores. 

As a result, this is not an estimate of the modeled defensive contribution vector D.  The limiting 
behavior of DPR is 

 

and an estimate using the average of opponent’s match scores that approaches a team’s true 
underlying defensive contribution is then 

 

The DPRb estimates are thus based on the DPR values but converge to the actual underlying 
values of D under limiting assumptions. 

 

Simultaneous Offense and Defense 

Simultaneous Offensive/ Defensive Power Rating (sOPR and sDPR) 

Following the derivations for OPR and WMPR as in previous sections, the full offensive and 
defensive contributions of teams, O and D, can be jointly and simultaneously estimated by 
minimizing Eo, which is equivalent to minimizing No’ No in the full model for Mo.  This results in 
the least squares solution of 

 

As with the WMPR measure, a constant K could be added to all values of O and D and still yield 
the same match outcome, so the pseudo-inverse must be used. 

For comparison with other metrics and across tournaments, it is suggested that the solution 
provided by the equation above be normalized so that the mean of the D values is zero.  This 
allows for the interpretation that a team’s sOPR value is their offensive contribution against an 
average defensive alliance, and that a team’s sDPR value is their defensive contribution relative 
to the defense of the average team. 

This formulation is the first time that the matrix products Ao’ Ad appear.  The i,jth elements of 
this matrix product is the number of times teams i and j played on opposing alliances.  The 
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diagonal elements of this matrix product are zero, as it is impossible for a team to play 
simultaneously on both the Red and Blue alliances. 

Compare the equation above with an equivalent equation for computing both the standard OPR 
and DPR shown below, and it becomes apparent that the main difference with the new 
formulation is the inclusion of the Ao’ Ad terms.  Note that the pseudo-inverse of a full rank 
square matrix is just the regular inverse. 

 

 

Simultaneous Winning Margin Power Rating (sWMPR) and Combined Power Rating 

(sCPR) 

The Simultaneous Winning Margin Power Rating (sWMPR) can be computed from the sOPR 
and sDPR as 

 

The Simultaneous Combined Power Rating can be computed from the sOPR and sDPR as 

 

This is a measure of a team’s overall contribution, normalized so the average element is equal 
to Oave.  As with the CPR, this allows for better comparisons across different tournaments. 

Mixtures 

Ether’s Power Rating (EPR) 

Contribution estimates can be computed by minimizing mixtures of the error measures used in 
previous sections.  For example, Ether has proposed minimizing 

 𝐸
𝐸

(α) = α 𝐸
𝑜

+  (1 − α) 𝐸
𝑤

with  = 0.5.  This tries to find the C-like vector that minimizes the sum of the prediction errors α
for both the offensive match score prediction and the winning margin prediction at the same 
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time.  Any combination of these two errors could also be used.  =1 corresponds to the normal α
OPR solution and =0 corresponds to the normal WMPR solution. α

With  = 0.5, this is equivalent to the model α

 

or 

 

The least squares solution is 

 

Note that the least squares solution usually is the maximum likelihood solution if the underlying 
noise is independent and identically distributed Gaussian/normal noise.  This is NOT the case in 
the EPR solution as No and Nw are not independent but are instead directly related. 
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Estimating Model Parameters Using Minimum Mean Squared Error 

(MMSE) Methods 

Problems with Least Squares Estimation Methods 

The application of least squares estimation methods to FIRST tournaments suffers from the 
following problems: 

1.​ Insufficient Data/ Overfitting.  In full tournaments, usually the number of total matches/ 
the number of teams playing is somewhere around 2.  For example, if there are 54 
teams playing in a tournament with 108 matches total, then OPR, DPR, and CCWM 
measures are each estimated using 216 match results to estimate 54 parameters, or 
only 4 data points per parameter.  For WMPR, CPR, sOPR, and sDPR measures, only 2 
data points per parameter are used.   

In these cases, the estimated parameters are very sensitive to the noise in the match 
results, and the estimated parameters are often poor estimates of the underlying 
parameters and poor at predicting match results not used in the parameter estimation 
process (i.e., the “training”).   

If parameters are estimated using partial tournament results to try to predict later 
qualification matches, the performance is even worse. 

It is not even possible to compute any of the least squares estimates until a sufficient 
number of matches has been played, as the resulting matrix to be inverted is not full 
rank. 

2.​ No incorporation of apriori knowledge of expected parameter ranges.  The least squares 
approach assumes nothing about what the parameters should be.  For example, least 
squares solutions weight the likelihood of a given OPR value being -1000, 50, or 100000 
the same.  If the range of the underlying O and D values is roughly known, this 
information can be incorporated in the parameter estimation techniques to improve the 
estimation. 

MMSE Estimation of Parameters 

In the previous sections, the unknown parameters were assumed to be constants that could 
take any value.  If the unknown parameters are instead modeled as random variables 
themselves coming from a particular random distribution, improved estimation can be achieved 
using MMSE parameter estimation techniques.  MMSE techniques essentially minimize the 
squared error in the prediction of the match scores plus the squared error in the prediction of the 
parameters themselves.  If the match noise and the parameter distributions are both modeled 
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as normally distributed, this becomes maximum likelihood estimation of the model parameters. 
Wikipedia has a good overview of MMSE Estimation. 

In particular, if the underlying elements of O have mean Oave= ⅓ of the average match score 

and variance , the underlying elements of D have mean Dave=0 and variance , and the σ
𝑜
2 σ

𝑑
2

elements of the match score noise are zero mean and have variance , then the various σ
𝑛
2

parameter estimation solutions using MMSE techniques become 

 

 

 

 

 

The MMSE solutions become the Least Squares solutions as the apriori variances of the O and 
D grow large, which is another way of saying that the Least Squares solutions are just the 
MMSE solutions where little-to-no apriori information is known about the values of the O and D 
values. 

The MMSE solutions also become the Least Squares solutions as the number of matches 
grows large, as the A’ A matrices can be roughly approximated by K I, where K is the number of 
matches a given team plays in the tournament.  As the tournament size gets large, the first term 
in each matrix inverse grows, causing the equations to become closer and closer to the LS 
equations. 

Note that  and  are the apriori estimates of the offensive and defensive variances per team, σ
𝑜
2 σ

𝑑
2

not per match.  Note also that  is the variance of the noise component on each individual σ
𝑛
2
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match score, R or B.  As a result, the elements of Mw have a variance of 2  leading to the σ
𝑛
2

factors of 2 that appear in the equations for the MMSE estimates of CCWM and WMPR. 

The MMSE estimate for EPRs is complicated by the fact that the covariance matrix for the 
expected noise is not diagonal (i.e., the noise elements are not independent).  Its derivation is 
discussed in Appendix B. 

Discussion of MMSE Estimation 

MMSE techniques have the following advantages: 

1.​ They can be used even when the number of underlying equations is less than the 
number of unknowns!  This means that initial parameters can be estimated in a 
tournament even when only a few matches have been played.  Initial estimates start at 
Oave and 0 for O and D respectively and progressively incorporate match information as 
matches are played. 

2.​ They are always full rank and thus remove the need for pseudo inverses in any 
computations. 

3.​ They address overfitting problems that occur when parameters are estimated with few 
data points.   

MMSE techniques have the following disadvantages: 

1.​ They require apriori expectations of the different variances.  Different choices for these 
variances result in different parameter estimates.  The relative values of the variances 
will vary from season to season as the particular scoring statistics of that season’s game 
change from those in previous years. 

A suggested method for selecting the relative variance values is to compute the MMSE 
solutions for different sets of variance values and select the MMSE solution that best predicts 
match results not used in the training process.  This is discussed in detail in later sections. 

Care should be used before deciding that  =0, even in a game where there is “no defense.”  σ
𝑑
2

Teams can adversely impact the scoring of the opposing alliance in different ways, including 
direct robot-to-robot defensive tactics, robots being effective at grabbing important scoring 
elements that both teams need (e.g., in FRC Recycle Rush, robots winning the initial “can 
race”), robots being effective at quickly grabbing quantities of low-scoring elements that both 
teams need (e.g., in FTC Cascade Effect, robots quickly grabbing most large balls or grabbing 
most large balls from the opposing side of the field, making it harder for the opposing alliance to 
find large balls to score), or teams creating hazards or scoring negatives for opposing alliances 

(e.g., litter in FRC Recycle Rush).  Perhaps the only time that  =0 is a valid assumption is in σ
𝑑
2

games where there is no possible interaction between the two alliances in any way.  If there’s 
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any interaction at all,  might not be zero.  However,  is often much less than and the σ
𝑑
2 σ

𝑑
2 σ

𝑜
2

resulting elements of D will then often have much less variance than the elements of O. 

Advanced MMSE Estimation 

The MMSE estimation techniques are improvements over least squares techniques because 
they incorporate apriori knowledge about the expected ranges of the O and D vectors.  
However, the derivations above assume that the apriori knowledge is the same for all teams.  

Further improvements to the parameter estimations could be made if knowledge about 
non-equal expectations is also incorporated.  This is a way to incorporate scouting into the 
calculation of the parameters.  A few examples might be: 

1.​ If a team shows up with a dead robot or no robot, their individual expected apriori Oi 
could be set to 0 instead of Oave and the expected variance of their Oi and Di values 
could be set to 0. 

2.​ If a team is consistently superior from tournament to tournament and season to season, 
their apriori expected Oi could be set to be above Oave.  Similarly, if a team is 
consistently inferior, their apriori expected Oi could be set to be below Oave.   

3.​ If a team is known to play strong defense, their apriori expected Di could be set above 0. 

4.​ If a team is known to attempt a scoring technique that can score a large amount of points 

but that is inconsistent, their apriori expected  could be set to a value greater than that σ
𝑜
2

of other teams, signifying that they are expected to have a greater variance in scoring 
than the average team. 

5.​ Before championships, the O and D estimates of all teams could be computed from 
regional tournaments and those estimates could be used as the apriori estimates of the 
O and D values for the teams at championships.  This allows for match prediction to 
occur at championships even before any matches are played.  The equations for this are 
presented in Appendix D. 

These adjustments are similar to normal scouting techniques in that they attempt to incorporate 
additional knowledge that may exist into ratings of teams. 

These possibilities are not discussed further in this paper. Appendix D shows the MMSE 
equations for OPR where different probabilistic estimates are known for the mean and variance 
of each team’s OPR value. 
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Evaluation of Methods 

This section presents the performance results for the metrics when used in both simulated 
tournaments and actual tournaments. 

Simulated Tournaments 

Simulation Environment 

The baseline tournament structure used for the initial simulations was the 2014 casa FRC 
tournament.  This tournament had 54 teams and 108 matches.  Each team played once every 9 
matches, and each team played 12 matches overall.  There are 2 overall matches per team in 
the tournament. 

This structure was used to simulate tournaments with more played.  For larger tournaments, the 
108 match schedule was repeated but with teams randomly permuted so that the same 
alliances did not occur every 108 matches. 

The OPR was computed for the actual tournament results.  It was found that the mean OPR 
was around 25 and the standard deviation of the OPR values was around 10.  As a baseline for 
the simulated tournament results, tournaments were simulated with the actual underlying O 
values taken from a normal distribution with mean 25 and standard deviation of 10.  Defensive 
and random match noise contributions were then added at varying levels to study the effects on 
the parameter estimation algorithms. 

Metrics of performance were computed using the full dataset in three ways: 

●​ “Training Set”:  The full set of data (i.e., the Training Set) was used to compute the 
model parameters, the model parameters were used to predict the match scores and 
winning margins, and then the metrics were computed comparing the actual match data 
with the predicted match data.  These results can be computed for simulated or actual 
tournaments.   

Measurements are reported as Eo/ (Mo-Oave)’(Mo-Oave) or Ew/ (Mw’ Mw) in percent, 
which shows the percentage of the variance of the Mo or Mw vector that is not predicted 
by the estimate.  0% corresponds to perfect prediction and 100% corresponds to no 
prediction. 

●​ “Testing Set”: For actual tournament match data, one match was removed from the 
training set, the model parameters were computed based on all other matches, the 
computed model parameters were used to predict the scores and winning margin for the 
single removed match, and then the metrics were computed comparing the actual match 
data with the predicted match data for the one removed match.  This was repeated, each 
time removing a different match, and the results were computed totalling or averaging 
the results from each individual test across all matches. 
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For simulated tournaments, the model parameters were computed based on a first set of 
simulated matches, and then the metrics were computed comparing a second set of 
simulated match outcomes with the predicted match outcomes using the parameters 
computed from the first set of simulated matches. 

Measurements are reported as Eo/ (Mo-Oave)’(Mo-Oave) or Ew/ (Mw’ Mw) in percent, 
which shows the percentage of the variance of the Mo or Mw vector that is not predicted 
by the estimate.  0% corresponds to perfect prediction and 100% corresponds to no 
prediction.  In overfit cases, it is possible for the measurements to be more than 100% 
on testing data, signifying that the “prediction” based on a small training set is worse 
than performing no prediction at all on testing data. 

●​ “Parameter Estimation”:  The full set of data was used to compute the model 
parameters and the estimated model parameters were compared with the actual 
underlying model parameters.  This is only possible with simulated tournaments, as for 
real tournaments the model is only an approximation and there are no underlying model 
parameters generating the data.   

Measurements are reported as Ep/ (P- Pave)’ (P-Pave) in percent, which shows the 
percentage of the variance of the parameter vector that is not predicted by the estimate.  
0% corresponds to perfect prediction and 100% corresponds to no prediction. 

Training Set results can look artificially good when there are relatively few match data points 
available for estimating the parameters (i.e., when “Overfitting” occurs).   

Testing Set results cannot look artificially good due to overfitting, as the Testing set data is not 
used in the parameter estimation.  Testing Set results are more appropriate for comparing how 
the models actually do in predicting unknown matches. 

With a very large number of matches, the Training Set results should approach the Testing Set 
results.  However, most FRC and FTC matches have between 1 and 3 overall matches per team 
in a given tournament, which introduces overfitting problems in the model parameter estimation 
procedures. 

Very Large Tournaments 

As a starting point, simulations were run for a tournament like the 2014 casa tournament with 54  
teams but with 10 times the number of matches as the actual tournament (i.e., 1,080 total 
matches instead of 108 matches). 
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The results of a sample run are shown below: 

VAR(O)=10;​ VAR(D)=0*VAR(O);​ VAR(N)=1*VAR(O);​ Least Squares Methods used 

Parameter Estimation Data 
O: Percent of variance of offensive contributions O left 
Oa   :   2.9 
OPR  :   0.9 
sOPR :   0.9 
 
W: Percent of variance of winning margin contributions W left 
Wa   :   4.2 
OPR  :   0.9 
sCPR :   1.3 
CPR  :   1.3 
CCWM :   2.2 
EPR  :   1.0 
 
Training Match Prediction Data 
Mo: Percent of variance of offensive scores left 
Oa   :  31.9:   
Oa+Da:  32.5:   
OPR  :  30.9:   
O+DPR:  31.6:   
sODPR:  30.4:   
 
Mw: Percent of variance of winning margins left 
Wa   :  32.7:   
OPR  :  30.8:   
sCPR :  30.4:   
CPR  :  30.4:   
CCWM :  31.6:   
EPR  :  30.5:   
 

Comments: 

There is no defensive component to the true underlying scores (VAR(D)=0), so there is no 
benefit to adding defensive estimated parameters.  Both OPR and sOPR have found the correct 
underlying O parameters to within around 1% of the true values, and all estimates of the 
underlying W parameters are within a few percent of the true values. 

The actual match scores are of the form M=O1+O2+O3+N where the O and N values all have 
identical variance (VAR(N)=1*VAR(O)), so 75% of the overall match variance is due to offensive 
contributions and 25% of the overall match variance is due to the noise.  Most estimates of the 
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O parameters successfully predict about 70% of the match variance and all of the estimates of 
the W parameters successfully predict about 70% of the variance in the match winning margins.   

The CPR and sCPR values are identical.  This is the case for LS estimates (where underlying 
parameters are identical) but not for the MMSE estimates. 

In contrast, the results for a run with defensive contributions equal in size to offensive 
contributions (i.e, a LOT of defense, with VAR(D) = VAR(O) are shown below: 

VAR(O)=10;​ VAR(D)=1*VAR(O);​ VAR(N)=1*VAR(O);​ Least Squares Methods used 

Parameter Estimation Data 
O: Percent of variance of offensive contributions O left 
Oa   :   3.5 
OPR  :   2.6    
sOPR :   0.9    
 
D: Percent of variance of defensive contributions D left 
Da   :   4.6 
DPRb :   3.0    
sDPR :   1.0    
 
W: Percent of variance of winning margin contributions W left 
Wa   :   3.3 
OPR  :  39.7    
sCPR :   0.7    
CPR  :   0.7    
CCWM :   2.3    
EPR  :  10.2 
 
Match Prediction Data 
Mo: Percent of variance of match scores left 
Oa   :  57.3:   
Oa+Da:  17.8:   
OPR  :  56.9:   
O+DPR:  17.0:   
sODPR:  15.7:   
 
Mw: Percent of variance of winning margins left 
Wa   :  15.5:   
OPR  :  46.2:   
sCPR :  13.7:   
CPR  :  13.7:   
CCWM :  14.7:   
EPR  :  21.4:   
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Comments: 

Now, the defensive components are equal in size to the offensive components.  Given the very 
large tournament size, the OPR estimate is still a good estimate for the underlying O values, 
though it’s off by a bit more than the sOPR estimate (2.6% v. 0.9%) because the OPR 
calculation doesn’t factor in the defensive contributions, resulting in a greater noise or deviation 
in the OPR calculation. 

The different estimates of the underlying D values are also all reasonably good. 

The winning margins are now equal part O and D, so the OPR can only account for about 50% 
of the variance in the winning margins while CCWM, CPR, and sCPR can all account for nearly 
all of the variance.  EPR is a pseudo-combination of OPR and CPR/WMPR so its results are 
somewhere in between. 

The actual match scores are now of the form M=(O1+O2+O3)-(D4+D5+D6)+N with all 7 
components having equal variance.   The OPR calculation can only account for the first 3 
components, and so cannot account for 4/7=57% of the variation in match scores and winning 
margins, whereas CCWM, CPR, and sCPR can account for all but 1/7 = 14% of the variations. 
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The results for a run “in between” with defense being 10% of the variance of offense are shown 
below: 

VAR(O)=10;​ VAR(D)=0.1*VAR(O);  VAR(N)=1*VAR(O);​   Least Squares Methods used 

Parameter Estimation Data 
O: Percent of variance of offensive contributions O left 
Oa   :   2.5 
OPR  :   1.1    
sOPR :   0.9    
 
D: Percent of variance of defensive contributions D left 
Da   :  28.2 
DPRb :  27.5    
sDPR :   8.9    
 
W: Percent of variance of winning margin contributions W left 
Wa   :   4.5 
OPR  :   7.5    
sCPR :   1.5    
CPR  :   1.5    
CCWM :   2.4    
EPR  :   2.9 
 
Match Prediction Data 
Mo: Percent of variance of match scores left 
Oa   :  28.7:   
Oa+Da:  24.4:   
OPR  :  27.9:   
O+DPR:  23.5:   
sODPR:  22.5:   
 
Mw: Percent of variance of winning margins left 
Wa   :  25.4:   
OPR  :  28.4:   
sCPR :  23.2:   
CPR  :  23.2:   
CCWM :  24.2:   
EPR  :  24.4:   
 
The Da and DPRb estimates suffer from the “signal” of the D values being small compared to 
the “noise” of both match noise and the large variations of the opponent’s offensive scores. 

A general conclusion drawn from these simulations is that the Least Squares parameter 
estimation techniques work well when the underlying data matches the model and when the 
number of data points is large. 
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Effects of Tournament Size 

The effect of having fewer matches is studied in this section. 

The following table shows the results of a run where a full simulated 10x tournament was 
created but the parameters were computed based only on the first 1x, 2x, 3x, 5x, and 10x 
matches. 

VAR(O)=10;​ VAR(D)=0.0*VAR(O);  VAR(N)=1*VAR(O);​   Least Squares Methods used 

         1x     2x​  3x​   5x​ ​  10x 
Parameter Estimation Data 
Percent of variance of offensive contributions O left 
OPR :    8.2​ 2.7​  1.8​   1.1​​  0.6 
sOPR:    8.8​ 2.9​  1.8​   1.2​​  0.6 
 
Percent of variance of winning margin contributions W left 
OPR :    8.2​ 2.8​  1.8​   1.1​​  0.6 
sCPR:   10.9​ 4.7​  2.9​   1.9​​  0.9 
CPR :   10.9​ 4.7​  2.9​   1.9​​  0.9 
CCWM:   24.2   10.8​  7.1​   4.7​​  2.2 
EPR :    7.6​ 3.0​  2.0​   1.3​​  0.7 
 
Training Match Prediction Data 
Percent of variance of offensive scores left 
OPR  :  14.5   15.3​ 15.7​  15.9​​ 16.8 
sODPR:  10.1   12.9​ 14.5​  15.2​​ 16.5 
 
Percent of variance of winning margin left 
OPR :   15.1   14.8​ 15.0​  14.8​​ 15.9 
sCPR:   10.9   12.7​ 13.9​  14.1​​ 15.6 
CPR :   10.9   12.7​ 13.9​  14.1​​ 15.6 
CCWM:   25.3   19.0​ 18.3​  16.7​​ 17.0 
EPR :   12.1   13.2​ 14.2​  14.3​​ 15.7 
 

Comments: 

Even with the data exactly fitting the model, 1 tournament with 108 matches for 54 teams is only 
enough data to allow the OPRs to be estimated to within about 8-9% of their actual values .  5

The results above are for a single simulation run: the values vary substantially particularly for 
the small tournament sizes. 

The WMPR, CPR, sOPR, sDPR, sCPR, and sWMPR metrics use half the relative amount of 
data as the OPR, CCWM, and DPR metrics do.  Given this, they suffer somewhat more from 

5 The results vary substantially depending on the ratio of Var(N)/Var(O).  If Var(N)/Var(O)=2, the 
percent of variance of offensive contributions O left is often more like 15-20%. 
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overfitting when the amount of data is small.  This can be seen in the Parameter Estimation 
Data rows comparing OPR with sOPR and OPR with CPR and sCPR.  When the tournament 
size is limited, there is greater variability in these estimates.  This can also be seen in the 
Training Set data, where sOPR, CPR, and sCPR appear to do better on small tournaments, 
because they are fitting the noise in the training set rather than just the underlying model.  This 
false improvement only appears on the Training Set data and does not appear on the Testing 
Set data. 

Training Set vs. Testing Set Data for Least Squares and MMSE Estimates 

The output results for a simulated tournament using LS and MMSE estimation techniques for 
the parameters are shown on the next page and explained on the following page. 
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2014: casa 
Teams = 54, Matches = 108, Matches Per Team = 2.000 
Simulated Data!! sig2D/sig2O = 0.100000​  sig2N/sig2O = 1.000000 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.40, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Parameter Estimation Data 
        LS     |  MMSE 
O: Percent of variance of offensive contributions O left 
Oa   :  19.0 
OPR  :   9.5   |   7.9 
sOPR :   9.0   |   7.6 
 
D: Percent of variance of defensive contributions D left 
Da   : 117.9 
DPRb : 153.2   |  63.5 
sDPR :  68.8   |  41.8 
 
W: Percent of variance of winning margin contributions W left 
Wa   :  30.2 
OPR  :  12.1   |  11.6 
sCPR :  13.3   |   8.0 
CPR  :  13.3   |  10.7 
CCWM :  25.0   |  15.0 
EPR  :   9.2 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  26.5:  |  40.0 
Oa+Da:  25.2:  |  41.6 
OPR  :  18.0:  |  30.4:  30.4:​  0.0​ ​ ( 0.00,  0.00) 
O+DPR:  17.8:  |  33.6:  29.6:​  2.7​ ​ ( 0.10,  2.00) 
sODPR:   9.0:  |  31.0:  28.9:​  4.9​  4.9​( 0.08,  1.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  27.1:  |  37.4 
OPR  :  15.7:  |  25.7:  25.7:​  0.0​ ​ ( 0.00,  0.00) 
sCPR :   8.2:  |  27.4:  25.3:​  1.8​  1.8​( 0.08,  1.00) 
CPR  :   8.2:  |  27.4:  26.8:​ -4.0​ -4.0​( 0.40,  1.00) 
CCWM :  16.8:  |  30.1:  25.6:​  0.5​  0.5​( 0.40,  2.00) 
EPR  :  10.3:  |  24.4: 
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Explanation of Simulation Output: 

The first three rows describe the simulation parameters. 

The next three rows describe the MMSE search parameters used in the MMSE estimation 
procedure. 

The next section describes the ability of the Least Squares (LS) and MMSE parameter 
estimation techniques to estimate the true underlying parameters.  Results for O, D and W are 
shown. 

The final section describes the ability of the LS and MMSE parameters to predict both the 
Training set match outcomes and the Testing set match outcomes.  Results for Mo and Mw are 
shown. 

%gn1 signifies the percentage reduction of the prediction residual compared to the LS OPR 
estimation that can be achieved: 100% signifies the same performance as the LS OPR 
parameters and 50% signifies that the prediction residual has half the variance of the LS OPR 
prediction residual.  

%gn2 signifies the percentage reduction of the prediction residual compared to the MMSE OPR 
estimation that can be achieved: 100% signifies the same performance as the MMSE OPR 
parameters and 50% signifies that the prediction residual has half the variance of the MMSE 
OPR prediction residual.  

The (VarD, VarN) numbers show the values of VarD/VarO and VarN/VarO in the MMSE search 
that produced the best predicted outcome on the Testing data. 

Comments: 

The results shown are fairly typical, but the results can vary substantially from run to run as the 
results depend on the randomly selected O, D, and N vectors. 

The various parameters do an OK job of estimating the underlying O and W parameters.  
Interestingly, the LS EPR does the best job of predicting the winning margins of all of the 
LS-estimated parameters.  It is speculated that this is because the EPR has the greatest 
number of data points per parameter value and thus suffers from the least amount of overfitting. 

It is difficult to estimate the D parameters with high accuracy because the values are small, and 
the O and N values act as noise in the Da and DPRb estimates.  The sDPR estimate is best, but 
is still not great. 

As expected, the sODPR, sCPR, and CPR LS estimates do the best job of predicting the 
Training set data due to their excessive overfitting.  But they are worse on the Testing set data, 
again due to the overfitting. 
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Gains can be achieved both by using MMSE estimation on the standard OPR values, and by 
using sODPR and sCPR estimates of match score and winning margin, respectively, as they 
can incorporate the defensive contributions. 

Data for a simulated run with the match noise 3 times greater than the previous run is shown on 
the following page. 
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2014: casa 
Teams = 54, Matches = 108, Matches Per Team = 2.000 
Simulated Data!! sig2D/sig2O = 0.100000​  sig2N/sig2O = 3.000000 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.40, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Parameter Estimation Data 
        LS     |  MMSE 
O: Percent of variance of offensive contributions O left 
Oa   :  47.4 
OPR  :  25.0   |  22.1 
sOPR :  39.5   |  22.0 
 
D: Percent of variance of defensive contributions D left 
Da   : 283.1 
DPRb : 375.3   | 138.2 
sDPR : 428.8   |  75.2 
 
W: Percent of variance of winning margin contributions W left 
Wa   :  66.2 
OPR  :  29.6   |  27.3 
sCPR :  59.2   |  25.6 
CPR  :  59.2   |  36.0 
CCWM :  57.0   |  40.1 
EPR  :  29.8 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  49.9:  |  68.6 
Oa+Da:  44.8:  |  86.7 
OPR  :  43.2:  |  56.9:  56.6:​  0.5​ ​ ( 0.00,  1.00) 
O+DPR:  36.0:  |  73.7:  62.1:​ -9.2​ ​ ( 0.00,  5.00) 
sODPR:  26.2:  |  67.0:  56.1:​  1.2​  0.7​( 0.02,  1.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  51.2:  |  87.6 
OPR  :  43.8:  |  55.0:  53.9:​  2.0​ ​ ( 0.00,  2.00) 
sCPR :  27.4:  |  63.6:  53.4:​  2.9​  1.0​( 0.04,  2.00) 
CPR  :  27.4:  |  63.6:  58.0:​ -5.6​ -7.7​( 0.04,  2.00) 
CCWM :  36.0:  |  69.2:  59.2:​ -7.7​ -9.8​( 0.30,  4.00) 
EPR  :  32.6:  |  54.7: 
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Now the overfitting is more extreme in the Parameter Estimation.  The LS sODPR, sCPR and 
CPR values that best predict the Training set match data are far from the actual underlying 
values because they are predicting more noise contribution.  This is exactly where MMSE 
techniques should be most helpful, and indeed they are. 

With large noise and small defensive components, all of the estimates of D produce poor 
results. 

Prediction of Match Winners 

The figure below shows a plot of the actual winning margins vs. the predicted winning margins 
by the LS OPR estimation for a simulated 2014 casa tournament. 

 

Better prediction results in match outcomes closer to the y=x line on the scatter plot. 

A match winner is predicted correctly if the sign of the true winning margin is the same as the 
sign of the predicted winning margin.  The probability of an error in predicting the match winner 
is thus the same as the probability of a point in the above plot being in the 2nd or 4th quadrant 
of the figure (NW or SE quadrants).  While reducing the squared winning margin prediction error 
should reduce the error in match winner prediction on average, the small number of matches in 
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a given tournament can cause a predictor with a smaller winning margin prediction error to have 
a slightly larger match winner prediction error. 

In the simulations run for this paper, the general trend was for the match winner prediction error 
to follow the match winning margin prediction error, though from simulation to simulation and 
tournament to tournament there are cases where there were differences. 

An example showing a slight difference is the actual (not-simulated) 2015 curie division results 
shown below. 

2015: curie 
Teams = 76, Matches = 127, Matches Per Team = 1.671 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
OPR  :  33.5:  |  68.5:  62.2:​  9.1​ ​ ( 0.00,  3.00) 
O+DPR:  36.5:  | 101.2:  69.5:​ -1.5​ ​ ( 0.00,  5.00) 
sODPR:  17.6:  | 110.3:  61.8:​  9.7​  0.6​( 0.06,  3.00) 
 
Mw: Percent of variance of winning margins left 
OPR  :  32.4:  |  64.3:  56.7:​ 11.9​ ​ ( 0.00,  3.00) 
sCPR :  15.3:  |  92.6:  54.4:​ 15.4​  4.0​( 0.10,  2.00) 
CPR  :  15.3:  |  92.6:  59.8:​  7.1​ -5.4​( 0.10,  2.00) 
CCWM :  34.9:  |  81.7:  62.3:​  3.2​ -9.8​( 0.10,  3.00) 
EPR  :  21.8:  |  62.9: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  19.2:  |  24.0:  24.8 
sCPR :  15.2:  |  32.8:  23.2 
CPR  :  15.2:  |  32.8:  25.6 
CCWM :  12.0:  |  24.8:  24.8 
EPR  :  12.8:  |  25.6: 
 

In this particular case, even though the variance of the winning margin prediction error for the 
OPR decreased from 64.3% with LS estimation to 56.7% with MMSE estimation, the probability 
of incorrectly predicting the match winner increased slightly (24.0% to 24.8%, or one match).   
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On LS and MMSE Parameters 

The MMSE estimation procedure tends to cause the resulting parameters to have a smaller 
overall variance when compared to the comparable LS parameters.  This happens because the 
MMSE parameters essentially pull the parameter estimates towards their means until enough 
data is available to create reliable estimates.  With only 1-2.5 matches per team in most FRC 
tournaments, overfitting is often a problem and this MMSE scaling can be significant. 

For example, results from a simulated 2014 casa tournament with Variance(O)=100 (or 
stdev(O)=10), Var(D)/Var(O)=0.0 and Var(N)/Var(O)=3 are shown on the figures on the next 
page (or maybe two pages from now, depending on how google docs formats the paper).  The 
tournament had 54 teams, so each team played 1 time every 9 total matches. The tournament 
had 108 total matches, or 12 matches played by every team. 

Each of the 4 plots on the left shows the estimated OPRs vs. the number of matches played per 
team (so X=1 means 9 total matches, X=2 means 18 total matches, etc.). The data points from 
1-12 on the X axis correspond to 1 match per team, ... up to 12 matches per team (the whole 
tournament). The 13th point on the X axis is the actual underlying O values. 

Plot 1 corresponds to the traditional Least Squares (LS) OPRs, which is also the MMSE solution 
where Var(N) is estimated to be equal to 0. Note that there are no OPR values until each team 
has played 4 matches, as that's the number of matches needed to make the matrix invertible.  
Plot 2 corresponds to the MMSE OPR estimates where Var(N) is estimated to be equal to  
Var(O) (“MMSE OPR(1)” or “MMSE 1”). As the actual Var(N)=3*Var(O), this is underestimating 
the noise in each match.  Plot 3 corresponds to the MMSE OPR estimates where Var(N) is 
estimated to be equal to 3* Var(O), the "correct" value (“MMSE 3”).  Plot 4 corresponds to the 
MMSE OPR estimates where Var(N) is estimated to be equal to 10* Var(O), greater than the 
actual noise (“MMSE 10”). 

The plot on the right shows the percentage error each curve has in estimating the actual 
underlying O values. 

The LS OPR values start out with a high variance and then settle down a bit. Looking at the step 
from X=12 (the final OPRs) to X=13 (the "real" O values), the final OPRs have more variance 
than the real O values. This means that the final OPRs are still overestimating the variance of 
the abilities of the teams. 

Look at the X=1 points for Plots 2-4. The MMSE estimates start conservatively with the OPRs 
bunched around the mean and then progressively expand out. Plot 4 shows the noise 
overestimated (the most conservative estimate), so the OPRs start out very tightly bunched and 
stay that way. Plot 2 starts out wider, and Plot 3 starts out in the middle. 

Look at the X=12 (the final estimates) vs X=13 (the "real" O values) points for Plots 2-4. Plot 2 
looks like it's still overestimating the variance, Plot 3 has it about right, and Plot 4 has 
underestimated the true variance even at the end of the tournament (The Plot 4 OPRs expand 
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out from X=12 to X=13). The variances of the OPRs computed by LS, MMSE 1, MMSE 3, and 
MMSE 10 were respectively 164, 138, 102, and 47. The MMSE 3 solution using the "right" 
Var(N) estimate is quite close to the true underlying variance of 100. Over multiple runs, the 
MMSE 3 solution is slightly biased under 100 on average, showing that more matches are 
needed for it to converge to the "right" variance. All of the techniques do eventually converge to 
the right solution and variance if the tournament is simulated to be much greater than 108 
matches. 

In Plot 5, the performances of the different techniques get close to each other as the tournament 
nears completion. They should all converge as the number of matches grows large as the LS 
and MMSE solutions will eventually converge to each other. But they are off by quite a bit early 
on. Even though the MMSE 1 solution with Var(N) underestimated at 1*Var(O) is 
underestimating the Var(N), it still gives pretty good results. 
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Actual Tournaments 

The different estimation algorithms were run on actual tournament data.  For MMSE estimation, 
different ranges of values for Var(D)/Var(O) and Var(N)/Var(O) were searched for each 
tournament.  The baseline range was usually: 

VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
If the optimal MMSE solution was found at the end of the range for a particular tournament (e.g., 
with Var(D)/Var(O)=0.10), then the simulation was sometimes rerun with a larger range. 

2014 Tournaments 

Initial runs were performed on a variety of 2014 tournaments of interest.  Some in particular are: 

●​ The 2014 championship divisions 
●​ casa, which was used for the simulated tournaments in the previous section 
●​ casb, which had the largest number of matches per team (2.2). 
●​ gadu, which had the smallest number of matches per team (1.5) and thus the largest 

potential for overfitting 

Results for a number of 2014 tournaments are provided in Appendix C. 
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As an example, the output summary for the 2014 gadu tournament is: 

2014: gadu 
Teams = 64, Matches = 96, Matches Per Team = 1.500 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  45.9:  |  79.7 
Oa+Da:  49.5:  | 104.9 
OPR  :  34.8:  |  78.6:  68.4:​ 12.9​ ​ ( 0.00,  3.00) 
O+DPR:  31.0:  | 108.9:  78.1:​  0.6​ ​ ( 0.00,  5.00) 
sODPR:  14.4:  | 125.2:  68.0:​ 13.4​  0.6​( 0.06,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  63.0:  | 108.6 
OPR  :  32.4:  |  71.0:  64.4:​  9.4​ ​ ( 0.00,  3.00) 
sCPR :  14.4:  | 118.6:  63.5:​ 10.5​  1.3​( 0.06,  2.00) 
CPR  :  14.4:  | 118.6:  71.7:​ -1.0​-11.4​( 0.10,  2.00) 
CCWM :  29.3:  |  96.1:  76.6:​ -7.9​-19.0​( 0.00,  3.00) 
EPR  :  21.0:  |  70.5: 
 ​ ​  ​   
 

Comments on this tournament: 

MMSE estimation of the OPR values results in a 12.9% reduction in the variance of the match 
score prediction error on the Testing set compared with LS estimation of the OPR values, and a 
9.4% reduction in the variance of the match winning margin prediction errors. 

The LS sODPR, sCPR, and CPR metrics do a better job of fitting the Training data, but as 
previously discussed, this is largely because they are overfitting the Training data.  In this 
tournament in particular (which had the smallest matches per team, 1.5, of all 2014 
tournaments), there are only 1.5 data points per parameter being estimated for these parameter 
sets, 4.5 data points per EPR parameter being estimated , and 3.0 data points per parameter 6

being estimated for the rest of the parameter sets. 

6 Though it appears that EPR has more data per parameter being estimated, ⅓ of the data used by EPR 
(the winning margins) is just a linear combination of the rest of the data (the match outcomes). 

41 



As a result, the LS sODPR, sCPR, and CPR metrics do a very poor job of predicting the 
outcomes in the Testing data, with all 3 having results >100% signifying that they are worse than 
simply predicting match scores or match winning margins by their respective averages! 

However, MMSE estimation corrects this problem.  sODPR/sCPR with MMSE estimation results 
in a very slight improvement in predicting Testing set match scores and winning margins (0.6% 
and 1.3%, almost nothing) compared with the comparable MMSE-estimated OPR values. 

In the best cases, the best predictors are able to predict between 30-40% of the variability in the 
match scores and winning margins in the Testing set, and 60-70% of the variability remains after 
prediction.  This reinforces that the parameters estimated include some meaningful information 
about team strength, but also that there is great variability from match to match that cannot be 
predicted. 

General Comments: 

In the 2014 Championship divisions, estimating the OPR values using MMSE techniques results 
in around a 12-13% reduction in the prediction error variance for match scores and winning 
margins. 

In the 2014 Championship divisions, there was little benefit to estimation techniques that 
incorporated defense.  For example, in the Archimedes and Newton divisions there were 3.6% 
and 0.8% improvements in winning margin respectively, and in the Curie and Galileo divisions 
there were no improvements over the results achieved by MMSE estimation of the OPRs. 

For the 2014 tournaments, the optimal MMSE value for Var(N)/Var(O) averaged around 3 or 4, 
signifying again that the unpredictable match variation was around the same as the predictable 
variation which is 3 times Var(O). 

For the 2014 tournaments, the optimal MMSE value for Var(D)/Var(O) ranged between 0 and 
0.2 and was usually below 0.1, signifying again that there was much more variability between 
the offense of the teams than the defense, or that the best teams were much better on offense 
than the worst but only slightly better on the defense than the worst, on average. 

The best parameters were better at predicting winning margins than they were at predicting 
match scores.  For example, for the four championship divisions, the percentage of match score 
variability that could not be predicted was 72.5%, 75.1%, 80.6%, and 78.5% vs. the percentage 
of winning margin variability that could not be predicted of 58.6%, 64.9%, 70.0% and 67.6%. 

In the casb tournament with 2.2 matches per team, around 50% of the winning margin variability 
could be predicted whereas for other tournaments with 1.5-2 matches per team only around 
30-40% of the winning margin variability could be predicted. 

2013 and 2015 Tournaments 

Results for 2013 and 2015 tournaments are also provided in Appendix C. 
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General Comments: 

The overfitting problem is particularly severe in the 2013 Championship divisions where only 
1.33 matches per team were played.  In these cases, the LS Training set data is particularly 
good and the LS Testing set data is particularly bad for sODPR, sCPR, and CPR where 
overfitting is more problematic.  The MMSE results are OK though, with consistent 
improvements of MMSE based estimation over LS based estimation on Testing set data. 

There are not many tournaments where incorporating defensive measures provide benefits in 
2013 or 2015 tournaments. 

In MMSE estimates of winning margins in 2013 tournaments, the optimal Var(N)/Var(O) ratios 
are around 1-2, signifying that there was less variance in the overall relative match noise score 
in the 2013 game compared to the 2014 game. 

Areas for Future Work 

1.​ Advanced MMSE/ Scouting Techniques as described previously. 

2.​ Improved MMSE searching.  The simulations run here searched the MMSE space using 
a fixed grid which sometimes may not have had sufficient resolution and sometimes may 
not have been wide enough to capture the optimal value of Var(D)/Var(O) and 
Var(N)/Var(O).  Improved linear programming techniques could probably be used to 
search for the optimal values in less time, possibly using Newton or pseudo-Newton 
methods. 

3.​ MMSE calculations for EPR.  While the author speculates that the ad-hoc nature of EPR 
will not produce superior results to the results shown here, MMSE estimation of the EPR 
parameters could be performed to prove this speculation correct or incorrect.  The 
MMSE calculation of EPR is discussed in Appendix B. 

4.​ Full comparisons.  The parameters could be estimated on the complete set of 
tournament data to determine the overall benefits of MMSE estimation and 
sODPR/sCPR based prediction over standard OPR prediction.  The match winner 
prediction could be computed for all tournaments for which data is available to determine 
the correlation between match winning margin prediction error and match winner 
prediction error. 
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Conclusions 

New improved techniques for incorporating defense into FRC and FTC tournament statistics 
have been introduced. 

New MMSE techniques for estimating model parameters have been introduced. 

Most FRC tournaments do suffer from a small data size, causing Least Squares estimates to be 
overfit to the noisy tournament data which degrades their performance in predicting match 
outcomes not in the Training set.  MMSE techniques appear to provide limited but significant 
and consistent improvements in match score and winning margin prediction compared to similar 
Least Squares techniques. 

While incorporating defense into the statistics using MMSE estimation techniques does not 
result in any decrease in the statistical prediction performance, the advantages in doing so are 
usually quite small and may make it not worth the effort to do so unless a given FRC season is 
expected to have substantial defensive components.  Occasionally incorporating defense can 
result in around an 8-12% further reduction in winning margin prediction error (e.g., 2014 casb, 
2015 incmp, 2015 micmp tournaments), but this is rare. 

MMSE based estimation of the sOPR, sDPR, and sCPR parameters results in the smallest 
squared prediction error for match scores and match winning margins across all of the studied 
parameters.  MMSE based estimation of OPR parameters often produces results that are quite 
close. 

Least Squares estimates of OPR, CCWM, and DPR using FRC tournament data probably 
overestimate the relative differences in ability of the teams.  MMSE estimates probably 
underestimate the relative differences. 

The small amount of data created in FRC tournaments results in noisy estimates of statistics.  
Testing set match outcomes from 2013-2015 often had very significant random components to 
them that could not be predicted by the best linear prediction methods, most likely due to purely 
random issues that occur in FRC matches. 
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Appendices 

Appendix A - Pseudo Code for Parameter Estimation Techniques 

/* Let ​
Ar = M_by_t binary matrix of red alliance teams​
Ab = M_by_t binary matrix of blue alliance teams​
​

Mr = M_by_1 column vector of red alliance match scores​
Mb = M_by_1 column vector of blue alliance match scores​
​

The various metrics can be computed using Least Squares methods as follows: */ 
 
nT = 3; // teams per alliance.  use 3 for FRC, 2 for FTC 
Oave = mean([Mr; Mb]) /nT; 
​

Ao = [Ar;Ab];​ Ad = [Ab;Ar];​ Aw = [Ar-Ab]; 
Mo = [Mr;Mb];​ ​ ​ ​ Mw = [Mw-Mb]; 
 
Oa = inv(eye(Ao’*Ao).*(Ao’*Ao)) *Ao’ *Mo - (nT-1)* Oave;  
Da = nT*Oave - inv(eye(Ad’*Ad).*(Ao’*Ao)) *Ad’ *Mo;  
Wa = (Oa -Oave) + Da; 
 
OPR = pinv(Ao)*Mo; ​
​

Mwprime = [Mw; -Mw];​
CCWM = pinv(Ao)*Mwprime;  
 
DPR = OPR - CCWM; 
DPRb = Oave - DPR;​
​

A = [Ar-Ab];​
M = [Mr-Mb];​
WMPR = pinv(Aw)*Mw;​
CPR = WMPR + Oave;​
​

Aepr = [Ao;Aw];​
Mepr = [Mo;Mw];​
EPR = pinv(Aepr)*Mepr; ​
​

As = [Ao,-Ad];​
sODPR = pinv(As)*Mo + Oave/2;​
sOPR = sODPR(1:t);​
sDPR = sODPR(t+1:2*t); 
​

sCPR = sOPR + sDPR; 
sWMPR= sCPR - Oave; 
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/* And the various metrics can be computed using MMSE as follows: */ 
 
sig2O=1; 
 
sig2N=2.0;  // pick your value relative to sig2O, or search a range. 
​ ​ // 2.0 means you expect the match noise to have roughly  
​ ​ // 2 times the variance as the variance of the OPRs. 
 
sig2D=0.02; // pick your value relative to sig2O, or search a range. 
​ ​ // 0.02 means you expect defense to be 2% of offense. 
​

​

OPR = inv(Ao’*Ao + sig2N/sig2O * eye(t)) *Ao’ *(Mo-(nT-1)*Oave) + Oave; ​
​

CCWM = inv(Ao’*Ao + 2*sig2N/(sig2O+sig2D) * eye(t)) *Ao’ *Mwprime; ​
 
// if sig2N=0, use LS WMPR estimation instead​
WMPR = inv(Aw’*Aw + 2*sig2N/(sig2O+sig2D) * eye(t)) *Aw’ *Mw; ​
CPR = WMPR + Oave;​
 
// if sig2N=0, use LS sOPDR estimation instead 
// if sig2D=0, use MMSE OPR estimation instead​
sODPR = inv( As’*As +[sig2N/sig2O*eye(t), zeros(t,t);  

    zeros(t,t),         sig2N/sig2D*eye(t)]) 
                                  *A’ *(M-(nT-1)*Oave);​

 
sOPR = sODPR(1:t) + Oave;​
sDPR = sODPR(t+1:2*t); 

​

sCPR = sOPR + sDPR; 
sWMPR= sCPR - Oave; 
 
// all matrices are symmetric positive definite, so could use Cholesky 
// decomposition to compute inverses. 
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Appendix B - MMSE Estimation of EPR Parameters 

The MMSE estimate of the EPR parameters is 

 

where CN is the covariance matrix of the noise vector and where   is the expected variance of σ
𝑐
2

the EPR values.  The limiting value of  is uncertain, as the EPRs would ideally approach the σ
𝑐
2

values of O to minimize the top part of the EPR equation but they would ideally approach the 
values of C = O + D to minimize the bottom part of the EPR equation.   

In all other cases except EPR, the MMSE solution has a similar form and CN is diagonal which 
allows for the substantial simplifications of the resulting equations as shown in the main body of 
this paper.  However, for EPR,  

 

and as a result, CN is not diagonal and is instead 

 

Because of these complications and because the EPR parameters were not found to be 
superior to other parameters (i.e., the WMPR, CPR, sOPR, sDPR, and sCPR values), MMSE 
estimation of EPRs was not performed as part of the simulations that were run for this paper. 
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Appendix C - Raw Output for Some Tournaments 

2013 FRC Regional Tournaments 

 
2013: mele 
Teams = 38, Matches = 83, Matches Per Team = 2.184 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  37.7:  |  57.2 
Oa+Da:  41.2:  |  72.6 
OPR  :  35.0:  |  58.8:  56.0:​  4.8​ ​ ( 0.00,  3.00) 
O+DPR:  37.6:  |  81.9:  64.5:​ -9.6​ ​ ( 0.04,  6.00) 
sODPR:  26.0:  |  85.4:  56.0:​  4.8​  0.0​( 0.00,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  44.1:  |  79.8 
OPR  :  33.4:  |  58.0:  55.6:​  4.2​ ​ ( 0.00,  2.00) 
sCPR :  24.4:  |  80.8:  55.6:​  4.2​  0.0​( 0.00,  2.00) 
CPR  :  24.4:  |  80.8:  65.6:​-13.1​-18.0​( 0.00,  2.00) 
CCWM :  37.1:  |  87.0:  70.9:​-22.3​-27.6​( 0.06,  4.00) 
EPR  :  27.0:  |  61.5: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  14.8:  |  17.3:  16.0 
sCPR :  12.3:  |  21.0:  16.0 
CPR  :  12.3:  |  21.0:  23.5 
CCWM :  14.8:  |  29.6:  32.1 
EPR  :  14.8:  |  18.5: 
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2013: mnmi2 
Teams = 60, Matches = 80, Matches Per Team = 1.333 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  34.2:  |  56.6 
Oa+Da:  54.4:  |  87.6 
OPR  :  21.4:  |  54.7:  48.3:​ 11.6​ ​ ( 0.00,  2.00) 
O+DPR:  33.9:  | 111.9:  65.4:​-19.6​ ​ ( 0.00,  4.00) 
sODPR:   9.7:  | 152.4:  48.3:​ 11.6​  0.0​( 0.00,  2.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  72.1:  |  78.8 
OPR  :  17.0:  |  41.5:  38.3:​  7.7​ ​ ( 0.00,  1.00) 
sCPR :   6.5:  | 107.1:  38.3:​  7.7​  0.0​( 0.00,  1.00) 
CPR  :   6.5:  | 107.1:  51.5:​-24.2​-34.6​( 0.00,  1.00) 
CCWM :  33.8:  |  81.3:  54.5:​-31.3​-42.3​( 0.00,  2.00) 
EPR  :  11.5:  |  45.3: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  11.5:  |  17.9:  17.9 
sCPR :   5.1:  |  25.6:  17.9 
CPR  :   5.1:  |  25.6:  21.8 
CCWM :  11.5:  |  29.5:  24.4 
EPR  :   7.7:  |  19.2: 
 
Wow, look at the overfitting of LS sODPR, sCPR, and CPR! 
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2013 FRC Championship Divisions 

 
2013: archi 
Teams = 100, Matches = 134, Matches Per Team = 1.340 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  41.5:  |  69.7 
Oa+Da:  67.0:  | 105.7 
OPR  :  23.0:  |  58.7:  52.8:​ 10.1​ ​ ( 0.00,  2.00) 
O+DPR:  42.8:  | 122.9:  68.5:​-16.7​ ​ ( 0.00,  5.00) 
sODPR:  12.1:  | 186.9:  52.8:​ 10.1​  0.0​( 0.00,  2.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  88.2:  | 114.9 
OPR  :  21.6:  |  52.5:  48.2:​  8.1​ ​ ( 0.00,  1.00) 
sCPR :  10.9:  | 168.0:  48.2:​  8.1​  0.0​( 0.00,  1.00) 
CPR  :  10.9:  | 168.0:  69.2:​-31.9​-43.5​( 0.10,  3.00) 
CCWM :  40.6:  | 111.1:  69.6:​-32.7​-44.4​( 0.10,  4.00) 
EPR  :  15.8:  |  61.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  13.6:  |  24.2:  22.0 
sCPR :   9.1:  |  35.6:  22.0 
CPR  :   9.1:  |  35.6:  34.8 
CCWM :  18.9:  |  33.3:  28.8 
EPR  :  11.4:  |  25.8: 
 
Wow, look at the overfitting of LS sODPR, sCPR, and CPR! 
Only having 1.34 matches per team really creates overfitting in 2013! 
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2013: curie 
Teams = 100, Matches = 134, Matches Per Team = 1.340 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  39.9:  |  66.4 
Oa+Da:  56.9:  |  91.5 
OPR  :  22.0:  |  55.9:  50.8:​  9.1​ ​ ( 0.00,  1.00) 
O+DPR:  32.7:  | 100.4:  63.5:​-13.6​ ​ ( 0.00,  4.00) 
sODPR:   8.1:  | 117.9:  50.8:​  9.2​  0.0​( 0.02,  1.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  75.2:  |  97.3 
OPR  :  21.8:  |  52.7:  47.7:​  9.5​ ​ ( 0.00,  1.00) 
sCPR :   6.9:  |  99.5:  46.9:​ 11.0​  1.7​( 0.06,  1.00) 
CPR  :   6.9:  |  99.5:  55.1:​ -4.6​-15.6​( 0.04,  1.00) 
CCWM :  29.8:  |  88.7:  64.4:​-22.2​-35.0​( 0.00,  2.00) 
EPR  :  14.1:  |  53.7: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  11.2:  |  21.6:  23.9 
sCPR :   7.5:  |  22.4:  21.6 
CPR  :   7.5:  |  22.4:  25.4 
CCWM :  16.4:  |  32.1:  33.6 
EPR  :  10.4:  |  17.9: 
 
Wow, look at the overfitting of LS sODPR, sCPR, and CPR! 
Only having 1.34 matches per team really creates overfitting in 2013! 
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2013: galileo 
Teams = 100, Matches = 134, Matches Per Team = 1.340 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  43.6:  |  78.2 
Oa+Da:  61.4:  | 121.6 
OPR  :  29.5:  |  75.4:  64.7:​ 14.2​ ​ ( 0.00,  3.00) 
O+DPR:  43.0:  | 149.1:  81.3:​ -7.7​ ​ ( 0.00,  6.00) 
sODPR:  14.5:  | 216.0:  64.7:​ 14.2​ -0.0​( 0.00,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  72.0:  | 127.7 
OPR  :  27.5:  |  66.8:  60.4:​  9.7​ ​ ( 0.00,  2.00) 
sCPR :  11.0:  | 160.2:  60.4:​  9.7​  0.0​( 0.00,  2.00) 
CPR  :  11.0:  | 160.2:  82.1:​-22.7​-35.9​( 0.10,  4.00) 
CCWM :  40.4:  | 130.3:  83.3:​-24.7​-38.0​( 0.10,  5.00) 
EPR  :  19.4:  |  74.4: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  16.7:  |  29.5:  27.3 
sCPR :  10.6:  |  37.1:  27.3 
CPR  :  10.6:  |  37.1:  34.1 
CCWM :  15.9:  |  31.8:  33.3 
EPR  :  13.6:  |  30.3: 
 
Wow, look at the overfitting of LS sODPR, sCPR, and CPR! 
Only having 1.34 matches per team really creates overfitting in 2013! 
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2013: newton 
Teams = 100, Matches = 134, Matches Per Team = 1.340 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  41.7:  |  72.4 
Oa+Da:  63.5:  | 107.7 
OPR  :  27.8:  |  70.9:  60.7:​ 14.3​ ​ ( 0.00,  3.00) 
O+DPR:  43.7:  | 132.8:  73.2:​ -3.2​ ​ ( 0.00,  6.00) 
sODPR:  13.8:  | 216.9:  60.7:​ 14.3​  0.0​( 0.00,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  73.4:  | 113.1 
OPR  :  24.9:  |  61.0:  55.6:​  8.9​ ​ ( 0.00,  2.00) 
sCPR :  10.1:  | 154.9:  55.5:​  9.1​  0.2​( 0.02,  2.00) 
CPR  :  10.1:  | 154.9:  69.0:​-13.1​-24.1​( 0.10,  2.00) 
CCWM :  38.5:  | 105.7:  72.0:​-18.0​-29.5​( 0.08,  3.00) 
EPR  :  16.4:  |  64.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  20.9:  |  29.9:  28.4 
sCPR :  12.7:  |  37.3:  29.9 
CPR  :  12.7:  |  37.3:  34.3 
CCWM :  16.4:  |  32.8:  32.1 
EPR  :  16.4:  |  29.9: 
 
 
Wow, look at the overfitting of LS sODPR, sCPR, and CPR! 
Only having 1.34 matches per team really creates overfitting in 2013! 
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2014 FRC Regional Tournaments 

 
2014: casa 
Teams = 54, Matches = 108, Matches Per Team = 2.000 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  44.4:  |  70.5 
Oa+Da:  40.6:  |  86.0 
OPR  :  41.0:  |  72.9:  67.2:​  7.8​ ​ ( 0.00,  4.00) 
O+DPR:  37.0:  |  95.4:  75.2:​ -3.3​ ​ ( 0.00,  6.00) 
sODPR:  27.0:  | 109.0:  67.2:​  7.8​  0.0​( 0.00,  4.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  42.2:  |  82.4 
OPR  :  37.0:  |  66.4:  62.9:​  5.4​ ​ ( 0.00,  3.00) 
sCPR :  24.0:  |  95.8:  62.8:​  5.5​  0.2​( 0.02,  3.00) 
CPR  :  24.0:  |  95.8:  70.4:​ -6.0​-12.0​( 0.08,  3.00) 
CCWM :  35.8:  |  87.9:  71.7:​ -8.0​-14.1​( 0.10,  4.00) 
EPR  :  28.1:  |  69.7: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  16.8:  |  27.1:  26.2 
sCPR :   8.4:  |  22.4:  25.2 
CPR  :   8.4:  |  22.4:  19.6 
CCWM :  10.3:  |  23.4:  24.3 
EPR  :  10.3:  |  21.5: 
 ​ ​   
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2014: casb 
Teams = 40, Matches = 87, Matches Per Team = 2.175 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  48.3:  |  75.2 
Oa+Da:  38.5:  |  86.0 
OPR  :  44.9:  |  75.7:  71.2:​  5.9​ ​ ( 0.00,  3.00) 
O+DPR:  37.5:  |  93.6:  80.7:​ -6.7​ ​ ( 0.10,  5.00) 
sODPR:  28.0:  |  94.9:  69.3:​  8.4​  2.7​( 0.10,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  28.4:  |  63.0 
OPR  :  30.1:  |  52.3:  52.3:​  0.0​ ​ ( 0.00,  0.00) 
sCPR :  17.1:  |  56.8:  46.6:​ 11.0​ 11.0​( 0.10,  1.00) 
CPR  :  17.1:  |  56.8:  50.1:​  4.4​  4.4​( 0.00,  1.00) 
CCWM :  27.2:  |  68.5:  62.2:​-18.8​-18.8​( 0.10,  2.00) 
EPR  :  20.9:  |  48.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  16.1:  |  26.4:  26.4 
sCPR :  12.6:  |  25.3:  23.0 
CPR  :  12.6:  |  25.3:  24.1 
CCWM :  16.1:  |  32.2:  32.2 
EPR  :  14.9:  |  24.1: 
 
  
(11% gain in winning margin prediction for MMSE sCPR vs. MMSE OPR)​​  ​    
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2014: gadu 
Teams = 64, Matches = 96, Matches Per Team = 1.500 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  45.9:  |  79.7 
Oa+Da:  49.5:  | 104.9 
OPR  :  34.8:  |  78.6:  68.4:​ 12.9​ ​ ( 0.00,  3.00) 
O+DPR:  31.0:  | 108.9:  78.1:​  0.6​ ​ ( 0.00,  5.00) 
sODPR:  14.4:  | 125.2:  68.0:​ 13.4​  0.6​( 0.06,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  63.0:  | 108.6 
OPR  :  32.4:  |  71.0:  64.4:​  9.4​ ​ ( 0.00,  3.00) 
sCPR :  14.4:  | 118.6:  63.5:​ 10.5​  1.3​( 0.06,  2.00) 
CPR  :  14.4:  | 118.6:  71.7:​ -1.0​-11.4​( 0.10,  2.00) 
CCWM :  29.3:  |  96.1:  76.6:​ -7.9​-19.0​( 0.00,  3.00) 
EPR  :  21.0:  |  70.5: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :   9.5:  |  16.8:  20.0 
sCPR :  14.7:  |  32.6:  20.0 
CPR  :  14.7:  |  32.6:  27.4 
CCWM :  15.8:  |  28.4:  26.3 
EPR  :   8.4:  |  18.9: 
​  ​   
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2014 FRC Championship Divisions 

 
2014: archi 
Teams = 100, Matches = 167, Matches Per Team = 1.670 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  50.8:  |  83.5 
Oa+Da:  61.8:  | 104.2 
OPR  :  41.2:  |  84.2:  73.3:​ 13.0​ ​ ( 0.00,  4.00) 
O+DPR:  42.6:  | 116.3:  77.7:​  7.8​ ​ ( 0.10,  6.00) 
sODPR:  23.0:  | 141.3:  72.6:​ 13.8​  1.0​( 0.10,  4.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  70.9:  |  94.6 
OPR  :  33.1:  |  65.2:  61.1:​  6.4​ ​ ( 0.00,  2.00) 
sCPR :  16.4:  | 100.1:  58.9:​  9.6​  3.5​( 0.10,  2.00) 
CPR  :  16.4:  | 100.1:  62.0:​  4.9​ -1.5​( 0.00,  2.00) 
CCWM :  40.8:  |  91.2:  62.9:​  3.5​ -3.0​( 0.00,  3.00) 
EPR  :  22.9:  |  65.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  14.5:  |  23.5:  24.1 
sCPR :   7.2:  |  25.9:  23.5 
CPR  :   7.2:  |  25.9:  25.9 
CCWM :  12.0:  |  25.3:  26.5 
EPR  :  10.8:  |  25.9: 
​ ​  ​   
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2014: curie 
Teams = 100, Matches = 167, Matches Per Team = 1.670 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  53.4:  |  87.3 
Oa+Da:  79.1:  | 129.1 
OPR  :  42.2:  |  85.9:  74.8:​ 12.8​ ​ ( 0.00,  5.00) 
O+DPR:  46.4:  | 128.5:  82.8:​  3.5​ ​ ( 0.00,  6.00) 
sODPR:  28.0:  | 172.7:  74.8:​ 12.8​  0.0​( 0.00,  5.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  96.4:  | 125.4 
OPR  :  34.8:  |  68.7:  64.6:​  6.1​ ​ ( 0.00,  2.00) 
sCPR :  22.5:  | 137.1:  64.6:​  6.1​  0.0​( 0.00,  2.00) 
CPR  :  22.5:  | 137.1:  72.7:​ -5.8​-12.6​( 0.00,  4.00) 
CCWM :  43.2:  | 105.6:  71.5:​ -4.0​-10.8​( 0.04,  5.00) 
EPR  :  27.9:  |  79.4: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  20.5:  |  30.1:  31.3 
sCPR :  18.7:  |  39.8:  31.3 
CPR  :  18.7:  |  39.8:  34.3 
CCWM :  21.7:  |  36.1:  34.3 
EPR  :  19.9:  |  34.3: 
 
​ ​ ​  
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2014: galileo 
Teams = 100, Matches = 167, Matches Per Team = 1.670 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  53.9:  |  88.6 
Oa+Da:  79.3:  | 127.1 
OPR  :  44.7:  |  91.1:  77.6:​ 14.8​ ​ ( 0.00,  6.00) 
O+DPR:  49.8:  | 134.7:  83.7:​  8.1​ ​ ( 0.04,  6.00) 
sODPR:  27.4:  | 168.1:  77.6:​ 14.8​  0.0​( 0.00,  6.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  94.0:  | 124.7 
OPR  :  36.9:  |  73.0:  68.6:​  6.1​ ​ ( 0.00,  3.00) 
sCPR :  20.8:  | 125.4:  68.6:​  6.1​  0.0​( 0.00,  3.00) 
CPR  :  20.8:  | 125.4:  74.0:​ -1.3​ -7.9​( 0.00,  4.00) 
CCWM :  45.9:  | 112.5:  73.1:​ -0.1​ -6.7​( 0.10,  6.00) 
EPR  :  28.4:  |  81.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  21.6:  |  31.1:  29.3 
sCPR :  18.6:  |  37.1:  29.3 
CPR  :  18.6:  |  37.1:  30.5 
CCWM :  21.0:  |  31.1:  29.3 
EPR  :  19.2:  |  34.1: 
​ ​ ​  
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2014: newton 
Teams = 100, Matches = 167, Matches Per Team = 1.670 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  55.7:  |  91.1 
Oa+Da:  74.4:  | 119.7 
OPR  :  46.7:  |  95.2:  79.5:​ 16.5​ ​ ( 0.00,  6.00) 
O+DPR:  43.5:  | 119.3:  82.0:​ 13.9​ ​ ( 0.10,  6.00) 
sODPR:  23.2:  | 139.5:  78.5:​ 17.5​  1.1​( 0.10,  6.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  83.8:  | 112.6 
OPR  :  35.6:  |  70.7:  68.1:​  3.7​ ​ ( 0.00,  2.00) 
sCPR :  18.6:  | 108.9:  67.6:​  4.5​  0.8​( 0.10,  3.00) 
CPR  :  18.6:  | 108.9:  69.5:​  1.8​ -2.0​( 0.02,  3.00) 
CCWM :  40.6:  |  96.4:  68.7:​  2.9​ -0.8​( 0.04,  4.00) 
EPR  :  25.3:  |  72.6: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  21.6:  |  31.7:  32.3 
sCPR :  14.4:  |  33.5:  31.7 
CPR  :  14.4:  |  33.5:  30.5 
CCWM :  20.4:  |  30.5:  31.1 
EPR  :  18.6:  |  28.7: 
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2015 FRC Regional Tournaments 

 
2015: gadu 
Teams = 66, Matches = 88, Matches Per Team = 1.333 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  48.5:  |  91.9 
Oa+Da:  50.0:  | 118.6 
OPR  :  35.6:  |  93.8:  77.8:​ 17.0​ ​ ( 0.00,  4.00) 
O+DPR:  39.7:  | 149.8:  87.5:​  6.7​ ​ ( 0.00,  6.00) 
sODPR:  16.5:  | 263.6:  77.8:​ 17.0​  0.0​( 0.00,  4.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  62.9:  | 116.4 
OPR  :  36.4:  |  88.9:  69.9:​ 21.4​ ​ ( 0.00,  4.00) 
sCPR :   8.3:  | 117.7:  68.0:​ 23.5​  2.7​( 0.10,  3.00) 
CPR  :   8.3:  | 117.7:  70.0:​ 21.3​ -0.2​( 0.00,  1.00) 
CCWM :  30.9:  |  93.7:  74.9:​ 15.7​ -7.2​( 0.10,  2.00) 
EPR  :  20.3:  |  80.6: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  24.4:  |  30.2:  32.6 
sCPR :   8.1:  |  22.1:  29.1 
CPR  :   8.1:  |  22.1:  25.6 
CCWM :  16.3:  |  33.7:  33.7 
EPR  :  15.1:  |  29.1: 
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2015: incmp 
Teams = 31, Matches = 68, Matches Per Team = 2.194 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  50.6:  |  77.0 
Oa+Da:  43.7:  |  89.8 
OPR  :  48.5:  |  80.2:  74.7:​  6.8​ ​ ( 0.00,  4.00) 
O+DPR:  41.3:  |  97.9:  83.6:​ -4.3​ ​ ( 0.10,  6.00) 
sODPR:  34.5:  | 114.2:  74.5:​  7.1​  0.3​( 0.04,  4.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  32.1:  |  66.7 
OPR  :  32.9:  |  57.2:  56.1:​  1.9​ ​ ( 0.00,  2.00) 
sCPR :  19.7:  |  64.8:  51.4:​ 10.2​  8.4​( 0.08,  1.00) 
CPR  :  19.7:  |  64.8:  54.8:​  4.2​  2.4​( 0.10,  2.00) 
CCWM :  27.5:  |  69.6:  63.7:​-11.3​-13.5​( 0.02,  2.00) 
EPR  :  23.3:  |  53.0: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  17.9:  |  26.9:  26.9 
sCPR :  13.4:  |  29.9:  26.9 
CPR  :  13.4:  |  29.9:  29.9 
CCWM :  19.4:  |  31.3:  29.9 
EPR  :  13.4:  |  31.3: 
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2015: micmp 
Teams = 102, Matches = 204, Matches Per Team = 2.000 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  57.2:  |  89.6 
Oa+Da:  52.2:  | 101.4 
OPR  :  51.3:  |  91.7:  81.4:​ 11.2​ ​ ( 0.00,  6.00) 
O+DPR:  44.9:  | 112.5:  84.3:​  8.1​ ​ ( 0.10,  6.00) 
sODPR:  32.9:  | 130.8:  80.8:​ 11.9​  0.8​( 0.10,  6.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  56.6:  |  86.5 
OPR  :  45.4:  |  79.0:  70.4:​ 10.9​ ​ ( 0.00,  5.00) 
sCPR :  21.5:  |  83.9:  64.7:​ 18.2​  8.1​( 0.10,  1.00) 
CPR  :  21.5:  |  83.9:  63.0:​ 20.2​ 10.4​( 0.00,  2.00) 
CCWM :  34.5:  |  79.8:  66.2:​ 16.2​  5.9​( 0.00,  3.00) 
EPR  :  29.7:  |  69.7: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  25.2:  |  35.1:  33.7 
sCPR :  17.3:  |  33.2:  31.7 
CPR  :  17.3:  |  33.2:  32.7 
CCWM :  19.3:  |  32.2:  32.2 
EPR  :  22.3:  |  34.2: 
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2015 FRC Championship Divisions 

​ ​ ​  
2015: archimedes 
Teams = 76, Matches = 127, Matches Per Team = 1.671 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  57.5:  |  95.5 
Oa+Da:  61.8:  | 130.2 
OPR  :  48.0:  |  98.7:  83.3:​ 15.6​ ​ ( 0.00,  6.00) 
O+DPR:  49.9:  | 153.2:  98.3:​  0.4​ ​ ( 0.00,  6.00) 
sODPR:  33.7:  | 207.9:  83.3:​ 15.6​  0.0​( 0.00,  6.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  73.2:  | 134.2 
OPR  :  43.6:  |  86.4:  74.0:​ 14.4​ ​ ( 0.00,  5.00) 
sCPR :  24.7:  | 144.8:  74.0:​ 14.4​  0.0​( 0.00,  5.00) 
CPR  :  24.7:  | 144.8:  88.3:​ -2.2​-19.4​( 0.10,  6.00) 
CCWM :  45.1:  | 127.3:  89.2:​ -3.2​-20.5​( 0.00,  6.00) 
EPR  :  31.2:  |  90.3: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  22.4:  |  33.6:  34.4 
sCPR :  17.6:  |  38.4:  34.4 
CPR  :  17.6:  |  38.4:  34.4 
CCWM :  20.8:  |  40.0:  36.0 
EPR  :  19.2:  |  28.8: 
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2015: curie 
Teams = 76, Matches = 127, Matches Per Team = 1.671 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  46.0:  |  72.8 
Oa+Da:  55.4:  |  92.7 
OPR  :  33.5:  |  68.5:  62.2:​  9.1​ ​ ( 0.00,  3.00) 
O+DPR:  36.5:  | 101.2:  69.5:​ -1.5​ ​ ( 0.00,  5.00) 
sODPR:  17.6:  | 110.3:  61.8:​  9.7​  0.6​( 0.06,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  75.3:  |  97.7 
OPR  :  32.4:  |  64.3:  56.7:​ 11.9​ ​ ( 0.00,  3.00) 
sCPR :  15.3:  |  92.6:  54.4:​ 15.4​  4.0​( 0.10,  2.00) 
CPR  :  15.3:  |  92.6:  59.8:​  7.1​ -5.4​( 0.10,  2.00) 
CCWM :  34.9:  |  81.7:  62.3:​  3.2​ -9.8​( 0.10,  3.00) 
EPR  :  21.8:  |  62.9: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  19.2:  |  24.0:  24.8 
sCPR :  15.2:  |  32.8:  23.2 
CPR  :  15.2:  |  32.8:  25.6 
CCWM :  12.0:  |  24.8:  24.8 
EPR  :  12.8:  |  25.6: 
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2015: galileo 
Teams = 76, Matches = 127, Matches Per Team = 1.671 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  43.3:  |  69.9 
Oa+Da:  39.8:  |  87.2 
OPR  :  31.2:  |  63.4:  58.8:​  7.2​ ​ ( 0.00,  2.00) 
O+DPR:  31.8:  |  96.2:  70.5:​-11.2​ ​ ( 0.00,  5.00) 
sODPR:  15.8:  |  97.4:  58.1:​  8.3​  1.2​( 0.06,  2.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  55.7:  | 110.7 
OPR  :  37.1:  |  72.8:  60.7:​ 16.7​ ​ ( 0.00,  4.00) 
sCPR :  14.3:  |  86.7:  60.4:​ 17.1​  0.5​( 0.10,  2.00) 
CPR  :  14.3:  |  86.7:  70.6:​  3.1​-16.3​( 0.10,  1.00) 
CCWM :  29.5:  |  91.6:  81.7:​-12.2​-34.7​( 0.02,  3.00) 
EPR  :  22.9:  |  65.3: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  19.7:  |  26.0:  28.3 
sCPR :  11.8:  |  26.8:  26.8 
CPR  :  11.8:  |  26.8:  29.1 
CCWM :  20.5:  |  35.4:  37.0 
EPR  :  15.0:  |  26.8: 
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2015: newton 
Teams = 76, Matches = 127, Matches Per Team = 1.671 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.10, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 1.000 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  43.7:  |  69.8 
Oa+Da:  49.7:  |  94.6 
OPR  :  33.5:  |  69.1:  62.0:​ 10.3​ ​ ( 0.00,  3.00) 
O+DPR:  36.2:  | 108.1:  75.3:​ -9.0​ ​ ( 0.00,  6.00) 
sODPR:  21.9:  | 135.7:  62.0:​ 10.3​  0.0​( 0.00,  3.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  59.4:  |  87.0 
OPR  :  27.1:  |  53.7:  49.7:​  7.4​ ​ ( 0.00,  2.00) 
sCPR :  13.4:  |  81.6:  49.0:​  8.8​  1.5​( 0.06,  2.00) 
CPR  :  13.4:  |  81.6:  58.4:​ -8.8​-17.5​( 0.10,  2.00) 
CCWM :  27.6:  |  75.6:  64.0:​-19.1​-28.7​( 0.00,  2.00) 
EPR  :  18.7:  |  53.8: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  18.1:  |  28.3:  29.9 
sCPR :  11.0:  |  31.5:  31.5 
CPR  :  11.0:  |  31.5:  30.7 
CCWM :  19.7:  |  30.7:  32.3 
EPR  :  16.5:  |  29.1: 
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2015 FTC Tournaments 

 

Ftc: /2015EastTesla 
Teams = 36, Matches = 81, Matches Per Team = 2.250 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.30, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 0.500 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  54.7:  |  84.3 
Oa+Da:  43.0:  |  91.8 
OPR  :  52.3:  |  86.3:  79.2:​  8.2​ ​ ( 0.00,  4.00) 
O+DPR:  41.3:  |  98.0:  82.0:​  5.0​ ​ ( 0.26,  5.50) 
sODPR:  36.1:  | 113.3:  77.9:​  9.7​  1.6​( 0.14,  3.50) 
 
Mw: Percent of variance of winning margins left 
Wa   :  42.0:  |  90.0 
OPR  :  49.4:  |  80.7:  75.9:​  6.0​ ​ ( 0.00,  3.00) 
sCPR :  32.9:  | 102.2:  73.3:​  9.2​  3.4​( 0.20,  3.00) 
CPR  :  32.9:  | 102.2:  76.4:​  5.4​ -0.7​( 0.22,  3.00) 
CCWM :  37.0:  |  89.7:  79.8:​  1.2​ -5.1​( 0.00,  2.50) 
EPR  :  38.0:  |  80.6: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  19.8:  |  24.7:  27.2 
sCPR :  13.6:  |  30.9:  25.9 
CPR  :  13.6:  |  30.9:  32.1 
CCWM :  18.5:  |  35.8:  32.1 
EPR  :  16.0:  |  28.4: 
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Ftc: /2015OregonTech 
Teams = 23, Matches = 29, Matches Per Team = 1.261 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.30, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 0.500 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  48.0:  | 105.5 
Oa+Da:  30.7:  |  77.9 
OPR  :  39.7:  | 107.9:  89.2:​ 17.4​ ​ ( 0.00,  2.50) 
O+DPR:  30.9:  |  87.0:  60.9:​ 43.6​ ​ ( 0.30,  1.50) 
sODPR:   6.7:  | 137.5:  62.8:​ 41.8​ 29.6​( 0.30,  0.50) 
 
Mw: Percent of variance of winning margins left 
Wa   :  57.0:  | 108.0 
OPR  :  65.8:  | 167.8:  95.3:​ 43.2​ ​ ( 0.00,  6.00) 
sCPR :  12.0:  | 208.0:  76.1:​ 54.7​ 20.2​( 0.30,  1.50) 
CPR  :  12.0:  | 208.0:  68.3:​ 59.3​ 28.3​( 0.22,  1.50) 
CCWM :  29.6:  | 103.3:  74.8:​ 55.4​ 21.5​( 0.16,  2.00) 
EPR  :  30.5:  | 135.9: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  17.2:  |  37.9:  31.0 
sCPR :   3.4:  |  31.0:  27.6 
CPR  :   3.4:  |  31.0:  20.7 
CCWM :   6.9:  |  20.7:  24.1 
EPR  :  17.2:  |  31.0: 
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Ftc: /2015OregonTimber 
Teams = 23, Matches = 29, Matches Per Team = 1.261 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.30, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 0.500 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  35.4:  |  80.3 
Oa+Da:  25.5:  | 102.1 
OPR  :  24.4:  |  68.3:  62.8:​  8.0​ ​ ( 0.00,  1.00) 
O+DPR:  25.8:  | 109.8:  76.7:​-12.4​ ​ ( 0.00,  2.50) 
sODPR:   8.7:  | 167.5:  57.2:​ 16.3​  9.0​( 0.06,  0.50) 
 
Mw: Percent of variance of winning margins left 
Wa   :  31.2:  | 157.0 
OPR  :  36.5:  |  96.6:  73.6:​ 23.8​ ​ ( 0.00,  2.00) 
sCPR :   8.5:  | 147.7:  52.4:​ 45.8​ 28.8​( 0.18,  0.50) 
CPR  :   8.5:  | 147.7:  72.5:​ 25.0​  1.5​( 0.30,  0.50) 
CCWM :  18.7:  |  94.5:  93.9:​  2.8​-27.5​( 0.30,  0.50) 
EPR  :  15.6:  |  69.5: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  27.6:  |  34.5:  31.0 
sCPR :  20.7:  |  41.4:  31.0 
CPR  :  20.7:  |  41.4:  44.8 
CCWM :  20.7:  |  51.7:  58.6 
EPR  :  24.1:  |  34.5: 
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2015 FTC Championship Divisions 

Ftc: /2015WorldsEdison 
Teams = 64, Matches = 144, Matches Per Team = 2.250 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.30, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 0.500 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  63.6:  |  97.5 
Oa+Da:  58.4:  | 109.2 
OPR  :  58.5:  |  96.6:  86.9:​ 10.1​ ​ ( 0.00,  6.00) 
O+DPR:  47.6:  | 107.6:  84.4:​ 12.6​ ​ ( 0.30,  6.00) 
sODPR:  37.3:  | 119.6:  83.9:​ 13.2​  3.4​( 0.30,  5.00) 
 
Mw: Percent of variance of winning margins left 
Wa   :  64.6:  | 113.0 
OPR  :  54.0:  |  88.7:  83.3:​  6.1​ ​ ( 0.00,  4.00) 
sCPR :  37.2:  | 118.0:  81.6:​  8.0​  2.0​( 0.26,  5.00) 
CPR  :  37.2:  | 118.0:  82.9:​  6.6​  0.5​( 0.20,  5.00) 
CCWM :  47.6:  | 106.3:  82.7:​  6.8​  0.7​( 0.22,  5.50) 
EPR  :  42.5:  |  90.2: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  25.0:  |  36.8:  34.7 
sCPR :  23.6:  |  38.2:  36.8 
CPR  :  23.6:  |  38.2:  33.3 
CCWM :  20.8:  |  36.8:  31.3 
EPR  :  22.2:  |  36.1: 
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Ftc: /2015WorldsFranklin 
Teams = 64, Matches = 144, Matches Per Team = 2.250 
 
MMSE search parameters 
VarD/VarO =  0.00 to  0.30, in steps of 0.020 
VanN/VarO =  0.00 to  6.00, in steps of 0.500 
 
Match Prediction Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE​ ​ %gn1​ %gn2​ ( VarD,  VarN) 
Mo: Percent of variance of match scores left 
Oa   :  50.8:  |  77.0 
Oa+Da:  54.4:  |  99.9 
OPR  :  44.6:  |  73.8:  69.1:​  6.3​ ​ ( 0.00,  2.50) 
O+DPR:  44.5:  |  99.9:  77.8:​ -5.4​ ​ ( 0.00,  5.00) 
sODPR:  31.6:  | 101.1:  69.1:​  6.3​ -0.0​( 0.00,  2.50) 
 
Mw: Percent of variance of winning margins left 
Wa   :  58.8:  |  99.6 
OPR  :  41.5:  |  68.1:  64.7:​  5.0​ ​ ( 0.00,  2.00) 
sCPR :  30.4:  |  97.3:  64.7:​  5.0​  0.0​( 0.00,  2.00) 
CPR  :  30.4:  |  97.3:  74.5:​ -9.4​-15.2​( 0.18,  3.00) 
CCWM :  44.2:  |  95.7:  75.7:​-11.2​-17.0​( 0.06,  3.50) 
EPR  :  34.1:  |  72.4: 
 
Match Winner Data 
    TRAINING   |  TESTING SET 
        LS     |  LS     MMSE 
Probability of incorrectly predicting match winner 
OPR  :  20.8:  |  29.9:  27.8 
sCPR :  18.8:  |  37.5:  27.8 
CPR  :  18.8:  |  37.5:  34.0 
CCWM :  22.2:  |  33.3:  31.3 
EPR  :  17.4:  |  30.6: 
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Appendix D - MMSE Equations for OPR with A Priori estimates of OPR Values 

Instead of assuming a priori that all of the OPR values are identically distributed with mean 

Oave and with variance , MMSE techniques can also be used to estimate the OPR values σ
𝑜
2

given different a priori estimates for each team’s OPR value. 

If we are given an a priori estimate of the mean OPR values as the vector Oe and estimates of 

the variances of the ith different team’s OPR as , then the MMSE estimate for the OPRs σ
𝑜𝑖
2

becomes 

 

and if  = for all i (i.e., the predicted variance for all OPRs is estimated to be the same), then σ
𝑜𝑖
2 σ

𝑜
2

the estimate becomes 

. 

Before a tournament starts, Ao = 0 and the estimate is simply the a priori OPR estimate, 

 

As the number of matches in a tournament grows large (which causes the first term in each set 

of parentheses to dominate) or if a priori knowledge of O is not available (i.e., if is infinite, σ
𝑜
2

which makes the second term in each set of parentheses zero), then the equation converges to 
the standard OPR equation, 

. 

Based on the experimental results shown in this paper, a reasonable choice for /  is 3 for σ
𝑛
2 σ

𝑜
2

FRC tournaments and 2 for FTC tournaments. These numbers are equivalent to assuming that 
roughly ½ of the variance in each match is due to differences in team strength (OPRs) and ½ is 
due to non-predictable randomness. 
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