SQL functionality in Albion Dependent Software

Sequel Query Language (SQL) is a database is a standard language for accessing and manipulating database and
the data in database tables. In Albion we have exposed the power of SQL language to the end user, so that they
can more readily and easily manipulated data in tables (layers). SQL allows for user to do reporting, cross
correlate data across multiple tables for example: vlookup - find records found in or not in another table. SQL
language in Albion can be used across all existing support data sources, shape files, sqlite db, avdb, css

The SQL language specification that is implemented in Albion is sglite3 the documentation for this language
can be found here at: http://www.sglite.org/lang.html. The sections of the language that Albion
supports are the following:

SELECT - Create a new table with a copy of the information your query has requested.
UPDATE - Update an original table

INSERT (INSERT INTO) — allows appending or records from on table to another

DELETE

Expression — logical if statements, calculations, math, string manipulation, sub query’s
Aggregate functions - ability to do sum, total average, reporting.

Many SQL examples can be found on the web, but we would refer you to the following source to
learn the whole language that is reasonable simple and straight forward and a tool.

e http://www.w3schools.com/sql/default.asp

Different Modes that SQL can be used for in Albion

These modes can be found on the Execute SQL menu.

Table Configure | BExecute SQL

Select Query Ctrl+E |
Update Query Ctrl+) |

Insert/Update Selected CAD to Column *
Select Queryand Highlight Records

e Select Query — Creates a new table with a copy of the data that has been retrieved and
manipulated through SQL from existing tables.
o Reporting Sum, AVG, COUNT
o Retrieve unique (distinct) list of items in a set of columns.
e Update Query — Make Changes to existing tables data using SQL
o Update...
o INSERTINTO ..
o DELETE..

http://www.sqlite.org/lang.html
http://www.w3schools.com/sql/default.asp

e Select Query and Highlight — User SQL statement to retrieve a set of records to highlight.

o This is similar to the existing SQL found at the bottom of the grid in image below.

o The difference is that it allows you the ability to write full SQL statement and not just
the part after a ‘WHERE’ clauses

o This means the SQL statement can be based on multiple tables of data. The most
common form and use is to highlight records, using what excel refers to as a vlookup,
where the columns value of the current table is found or not found in another table
column (list).

All Selected saL ~ |Replace = | 7

Pointers:

The equivalent ‘if’ statement in excel is:

CASE col WHEN value THEN 1 WHEN value THEN 2 ELSE 3 END

Or

CASE WHEN condition THEN 1 WHEN condition THEN 2 ELSE 3 END

Additional External Functions

acos, asin, atan, atn2, atan2, acosh, asinh, atanh, difference, degrees, radians, cos, sin,
tan, cot, cosh, sinh, tanh, coth, exp, log, logl0, power, sign, sqrt, square, ceil, floor, pi.
String: replicate, charindex, leftstr, rightstr, Itrim, rtrim, trim, replace, reverse, proper,
padl, padr, padc, strfilter.

Aggregate:

stdev, variance, , median, lower_quartile, upper_quartile

Examples of SQL Statements
These are a set of the more common statements that will be used by Albion operators.
Reporting features:

Reporting feature make use of a select query that features aggregate functions and group by, having
clauses. The following queries are based on the data set in test_diameters.sqlite. These exact SQL
query statements can be found in the SQL_QUERY table in the database. They can be executed
thought the ‘Select Query’ menu.

Select [TYPE], Count(*) as number_of_pipes, SUM([diameter]) as total_length, avg([diameter]) as
average_length From [Pipes]

PVvC 411 84666 206

Select [TYPE], Count(*) as number_of_pipes, SUM([diameter]) as total_length, avg([diameter]) as
average_length From [Pipes] GROUP BY [TYPE]

Type Number of Pipes Total Length Average Length
ABS 82 16933 206.5
CEMT 82 16851 205.5
HPVC 82 17015 207.5
POLY 82 16769 204.5
PVC 83 17098 206

Select [TYPE], Count(*) as number_of_pipes, SUM([diameter]) as total_length, avg([diameter]) as

average_length From [Pipes] GROUP BY [TYPE]

HAVING total_length < 17000

Type Number of Pipes Total Length Average Length
ABS 82 16933 206.5

CEMT 82 16851 205.5
POLY 82 16769 204.5

Having clauses can be used to filter the results of the aggregate function columns, those columns
that feature Count, Sum, AVG. This is clearly visible in the difference between the queries.

Select d.*, Count(*) as number_of_pipes, SUM([diameter]) as total_length, avg([diameter]) as
average_length From Diameters as d inner join Pipes as p on (p.diameter <= d.less and p.diameter >
d.more) group by d.[Field1]

Cat Less More Number of Pipes Total Length Average Length
Diameter Cat 100 100 0 100 5050 50.5
Diameter Cat 200 200 100 100 15050 150.5
Diameter Cat 300 300 200 100 25050 250.5
Diameter Cat 400 400 300 100 35050 350.5
Diameter Cat 500 500 400 11 4466 406

Select d.*,[TYPE], Count(*) as number_of pipes, SUM([diameter]) as total_length, avg([diameter]) as
average_length From Diameters as d inner join Pipes as p on (p.diameter <= d.less and p.diameter >
d.more) group by d.[Field1], [TYPE]

Cat Less More TYPE Number of Pipes Total Length Average Length
Diameter Cat 100 100 0 ABS 20 1030 51.5
Diameter Cat 100 100 0 CEMT 20 1010 50.5
Diameter Cat 100 100 0 HPVC 20 1050 52.5
Diameter Cat 100 100 0 POLY 20 990 49.5
Diameter Cat 100 100 0 PVC 20 970 48.5
Diameter Cat 200 200 100 ABS 20 3030 151.5
Diameter Cat 200 200 100 CEMT 20 3010 150.5
Diameter Cat 200 200 100 HPVC 20 3050 152.5
Diameter Cat 200 200 100 POLY 20 2990 149.5
Diameter Cat 200 200 100 PVC 20 2970 148.5
Diameter Cat 300 300 200 ABS 20 5030 251.5
Diameter Cat 300 300 200 CEMT 20 5010 250.5
Diameter Cat 300 300 200 HPVC 20 5050 252.5
Diameter Cat 300 300 200 POLY 20 4990 249.5
Diameter Cat 300 300 200 PVC 20 4970 248.5
Diameter Cat 400 400 300 ABS 20 7030 351.5
Diameter Cat 400 400 300 CEMT 20 7010 350.5
Diameter Cat 400 400 300 HPVC 20 7050 352.5
Diameter Cat 400 400 300 POLY 20 6990 349.5
Diameter Cat 400 400 300 PVC 20 6970 348.5
Diameter Cat 500 500 400 ABS 2 813 406.5
Diameter Cat 500 500 400 CEMT 2 811 405.5
Diameter Cat 500 500 400 HPVC 2 815 407.5
Diameter Cat 500 500 400 POLY 2 809 404.5
Diameter Cat 500 500 400 PVC 3 1218 406

Alternative to quickly getting evenly grouped summaries reports.

Say for instant you want to generate a report just like above, but you need a quick method to

get the count of how many diameters that are form an evenly spaced ranged, there is simple
solution which is very quick. So say we wanted categories starting at 0 an being group by
every 100 then this is how you would write the report.

Select (ceil([Diameters]/100) * 100) as diam_cat_Less_equal, count(*) as num_of pipes
avg([diameter]) as average_length from [Pipes] group by (ceil([Diameters]/100) * 100)

Select Query and Highlight Records

Make sure that you have the layer on which you want records, to be selected on from a resulting SQL
guery that is open in the grid. Then click the menu item from the ‘Select Query and Highlight
Records’ found under the ‘Execute SQL menu.

For this to work and to highlight the right records the SQL statement must return the

‘rowid’ column from the current table you are viewing in the grid, as can be seen in the statement
below.

To run these two examples the data set can be found in ‘Select_where_in_example.sqglite’

Open the Grid and set the layer to ‘BackColors’
e Lookup columns found in another table:

Select rowid From BackColors where coll in (Select col_in From table_in where col_in is not null)
e Lookup columns not found in another table.

Select rowid From BackColors where coll not in (Select col_in From table_in where col_in is not null)

Very import in the sub-query the SQL statement in bold, italics, red is the part where the column on
which the lookup is to be done, must exclude nulls. Reason a NULL will match anything, thus it will
return no records to highlight.

If you imagine null as a set and null means the set is empty (nothing) then what is the not or opposite
NULL then? Not of empty is full and the not of nothing is everything. This is the reason why you have
to exclude nulls from the subquery as you noting the result which in tern then is everything.

This is a better method to use to save a sub selection
of data, than to create a new table using Select Query.

