PUBLIC

Throttling Blink’s rendering pipeline for hidden

content
skyostil@

August 28th, 2015
Tracking bug: 487937
Patch: https://codereview.chromium.org/1364063007/

Introduction

Pages with many animated elements — often advertisements — can end up having a poor
user experience or low power efficiency because animation and other work is performed for
the entire page instead of just the visible parts. This document proposes an improvement
where we limit the amount of computation we do for frames which are outside the visible
viewport bounds.

Algorithm
Per frarmie events
Enable or
Update - scioll . Update | Updale | Composiing Paint = disable
animations = window resize DAL e LA & style layaut updaie invalidation throtiling pear
- madisguary changed frarna
- animation evenls
Update
rAF Layout Paint throttling

The diagram above (adapted from Resize Observers) shows the main stages of Blink’s
rendering pipeline plus a new stage for configuring per-frame throttling. Each of the stages
processes the whole frame tree recursively. The proposal is to terminate the recursion at
each stage if:

1. the frame to be processed is outside the visible viewport bounds, and
2. the frame to be processed is in a different security origin compared to the current
frame.

In practice, this will stop all rendering pipeline related processing in each respective stage for
cross-origin frames which are outside the viewport.

Cross-origin requirement

The visibility determination is only done for cross-origin frames to reduce the chances of
breaking content which could synchronously observe the suspension of rAF callbacks and
other side effects the pipeline in the affected frame. Cross-origin frames can only

https://code.google.com/p/chromium/issues/detail?id=487937
https://codereview.chromium.org/1364063007/
https://docs.google.com/document/d/14y3ReQo_TU8N81V1okwmfT5LtRxj-20UiNJ3ddU9vsI/edit#heading=h.7knu3cty7bsn

PUBLIC

communicate asynchronously, so existing content must already deal with deferred
responses.

Visibility determination

Every time a frame’s geometry changes, we document

recursively project its bounds all the way up ot frame

to the root frame view. At each level the

bounds are clipped to the intermediate I I__I'"“‘frg:f:*“*‘

frame’s viewport. If the bounds become _ _/ .
empty at any point, this means the frame v

isn’t visible in the root viewport. bounds \;rl

Note that we use exact visibility
determination instead of relying on the
compositor prepainting region. This is

aggressively large (several kpixels)

prepainting region, limiting the effectiveness

of this optimization. As a future improvement a “Soon” visibility state could be added to
reduce the chances of seeing stale content while scrolling.

Throttling update stage

The new throttling update stage ensures that throttling is enabled or disabled at controlled
times. This is because the visibility of a frame could change at any point during the animate,
rAF or layout stages, but it is not possible to start the pipeline for a frame in the middle
without also going through all the preceding stages. Instead, the new visibility information is
applied to throttling at the very end of the pipeline; if any frame became unthrottled because
of this, we schedule another pipeline update to guarantee eventual consistency.

Forced layouts

Sometimes Blink needs to perform a forced layout (a.k.a. lifecycle update) to obtain
consistent geometry information. This happens for example during hit tests. In these cases
we need to run the style, layout and compositing update parts of the pipeline for every frame
including throttled ones.

{partially}
wisibla
frame

invisible
because the compositor currently uses an frame

PUBLIC

Future improvements

e |Instead of exact visibility determination, use the compositor’s prepainting region via
some kind of PaintObserver. The compositor currently uses an aggressively large
prepainting region, limiting the effectiveness of this optimization. If that can be
reduced, we could add an intermediate “Soon” visibility state.

e A latency improvement (suggested by chrishtr@) would be to perform a layout pass
after the animation update to see if any new frames became visible, and, if so,
update their animations. This would eliminate one frame of rAF latency when a layout
change makes a previously hidden frame visible. Note that because the compositor
still runs asynchronously, this wouldn’t completely eliminate the possibility of seeing
old content. For simplicity this is left out from v1.

Open issues

e Do cross domain iframes with zero size, display: none or similar need to be
considered visible? smfr seems to think so.
o The current implementation does not throttle “display: none” iframes, but
always throttles 0x0 iframes.
e Can we somehow safely extend this to same origin frames?

Resources

e requestAnimationFrame prollyfill with visibility support:
https://qithub.com/greggman/requestanimationframe-fix.js

e HTML processing model:
https://html.spec.whatwg.org/multipage/webappapis.html#processing-model-9

https://twitter.com/smfr/status/616325089944932352
https://github.com/greggman/requestanimationframe-fix.js
https://html.spec.whatwg.org/multipage/webappapis.html#processing-model-9

Research

PUBLIC

e How did Firefox implement this?

o O O O O

Tracking bug, patch

Shipping in Firefox 40

Throttling done a per document level

Throttles to 1 fps instead of completely disabling rAF

Visibility check is based on whether the document was painted in the last
frame. This can cause one extra rAF to go through after the iframe has left
the screen. Also, one frame is dropped when the iframe becomes visible
again.

Problems with first paint — code thinks the document is still invisible

How does this work when we don’t paint at all? Not sure, but it seems to
work. Maybe they always trigger paint in rAF?

e How far along are the various visibility APIs and can we reuse them?

o

o

o

Well, the page visibility API is already shipping.
The APl is limited to to tracking the visibility of the root Document, but there’s
a w3 thread by seth@mozilla.com (who also implemented rAF throttling)
about extending it to iframes.

m Earlier identical proposal on public-web-perf. Issue: some APIs are

tied to page visibility in their specs.

m Alternate suggestion: <iframe autopause>

m Discussion seems to have stalled
Element visibility APl doesn’t seem to exist

e How is visibility determined for animated GIFs?

o

https://codereview.chromium.org/1026823002 added the notion of a delayed
paint invalidation for images

https://codereview.chromium.org/1145643002 extended it to handle animated
background images

LayoutBox/Image::imageChanged() sets the invalidation reason to
PaintinvalidationDelayedFull

LayoutBox::invalidatePaintifNeeded() checks
LayoutBox::intersectsVisibleViewport() and keeps the invalidation reason as
DelayedFull unless the box intersects the viewport

The GIF animation timer only ticks once and is restarted once the image gets
drawn again

Uses the skewport/extended viewport by virtue of the compositor drawing a
little outside the screen

e How does the resource scheduler determine visibility?

o

o

o

Works on a per-tab basis (client == tab)
Tab is considered to be active if it is visible or audible
Doesn’t use per-element visibility or spatial prioritization -- except for images.

e How expensive is it to compute visibility?

https://bugzilla.mozilla.org/show_bug.cgi?id=1145439
https://hg.mozilla.org/integration/mozilla-inbound/rev/19a79b7400fe
https://developer.mozilla.org/en-US/docs/Web/Guide/User_experience/Using_the_Page_Visibility_API
https://lists.w3.org/Archives/Public/public-whatwg-archive/2015Mar/0229.html
mailto:seth@mozilla.com
https://lists.w3.org/Archives/Public/public-web-perf/2014Jan/0047.html
https://codereview.chromium.org/1026823002
https://codereview.chromium.org/1145643002

PUBLIC

o Doesn’'t seem to be too bad since we're doing it for every animated image
every time we paint.
o All FrameViews are also already notified when their geometry changes.
e How do we avoid checkerboarding?
o Firefox didn’'t seem to worry too much about this since their rAF can be
delayed by one frame after the iframe becomes visible.
o Made a small test page that measures the time between rAFs. Seems to drop
up to two frames on Firefox when becoming visible.
e Do we want to suspend rAF completely or just throttle it?
o Intuitively doing animation work for hidden content doesn’t feel sensible.
Limiting this to cross origin frames should be safe.
e Architecture: how do we reconcile this with spatial scheduling (timers, loading tasks)?
o FrameView viewport visibility observers seem like a good building block.

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/layout/LayoutBox.h&l=834
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/layout/LayoutBox.h&l=834

	Throttling Blink’s rendering pipeline for hidden content
	Introduction
	Algorithm
	Cross-origin requirement
	Visibility determination
	
	Throttling update stage
	Forced layouts

	Future improvements
	●​Instead of exact visibility determination, use the compositor’s prepainting region via some kind of PaintObserver. The compositor currently uses an aggressively large prepainting region, limiting the effectiveness of this optimization. If that can be reduced, we could add an intermediate “Soon” visibility state.
	Open issues
	Resources
	
	
	
	
	Research

