
PUBLIC 

Throttling Blink’s rendering pipeline for hidden 

content 

skyostil@ 

 
August 28th, 2015 
Tracking bug: 487937 
Patch: https://codereview.chromium.org/1364063007/ 
 

Introduction 

 
Pages with many animated elements – often advertisements – can end up having a poor 
user experience or low power efficiency because animation and other work is performed for 
the entire page instead of just the visible parts. This document proposes an improvement 
where we limit the amount of computation we do for frames which are outside the visible 
viewport bounds. 

Algorithm 

 

 
 
The diagram above (adapted from Resize Observers) shows the main stages of Blink’s 
rendering pipeline plus a new stage for configuring per-frame throttling. Each of the stages 
processes the whole frame tree recursively. The proposal is to terminate the recursion at 
each stage if: 
 

1.​ the frame to be processed is outside the visible viewport bounds, and 
2.​ the frame to be processed is in a different security origin compared to the current 

frame. 
 
In practice, this will stop all rendering pipeline related processing in each respective stage for 
cross-origin frames which are outside the viewport. 
 

Cross-origin requirement 

 
The visibility determination is only done for cross-origin frames to reduce the chances of 
breaking content which could synchronously observe the suspension of rAF callbacks and 
other side effects the pipeline in the affected frame. Cross-origin frames can only 

https://code.google.com/p/chromium/issues/detail?id=487937
https://codereview.chromium.org/1364063007/
https://docs.google.com/document/d/14y3ReQo_TU8N81V1okwmfT5LtRxj-20UiNJ3ddU9vsI/edit#heading=h.7knu3cty7bsn


PUBLIC 

communicate asynchronously, so existing content must already deal with deferred 
responses. 

Visibility determination 

 
Every time a frame’s geometry changes, we 
recursively project its bounds all the way up 
to the root frame view. At each level the 
bounds are clipped to the intermediate 
frame’s viewport. If the bounds become 
empty at any point, this means the frame 
isn’t visible in the root viewport. 
 
Note that we use exact visibility 
determination instead of relying on the 
compositor prepainting region. This is 
because the compositor currently uses an 
aggressively large (several kpixels) 
prepainting region, limiting the effectiveness 
of this optimization. As a future improvement a “Soon” visibility state could be added to 
reduce the chances of seeing stale content while scrolling. 

 

Throttling update stage 

 
The new throttling update stage ensures that throttling is enabled or disabled at controlled 
times. This is because the visibility of a frame could change at any point during the animate, 
rAF or layout stages, but it is not possible to start the pipeline for a frame in the middle 
without also going through all the preceding stages. Instead, the new visibility information is 
applied to throttling at the very end of the pipeline; if any frame became unthrottled because 
of this, we schedule another pipeline update to guarantee eventual consistency. 
 

Forced layouts 

 
Sometimes Blink needs to perform a forced layout (a.k.a. lifecycle update) to obtain 
consistent geometry information. This happens for example during hit tests. In these cases 
we need to run the style, layout and compositing update parts of the pipeline for every frame 
including throttled ones. 
 
 



PUBLIC 

Future improvements 

●​ Instead of exact visibility determination, use the compositor’s prepainting region via 
some kind of PaintObserver. The compositor currently uses an aggressively large 
prepainting region, limiting the effectiveness of this optimization. If that can be 
reduced, we could add an intermediate “Soon” visibility state. 

●​ A latency improvement (suggested by chrishtr@) would be to perform a layout pass 
after the animation update to see if any new frames became visible, and, if so, 
update their animations. This would eliminate one frame of rAF latency when a layout 
change makes a previously hidden frame visible. Note that because the compositor 
still runs asynchronously, this wouldn’t completely eliminate the possibility of seeing 
old content. For simplicity this is left out from v1. 

Open issues 

 
●​ Do cross domain iframes with zero size, display: none or similar need to be 

considered visible? smfr seems to think so. 
○​ The current implementation does not throttle “display: none” iframes, but 

always throttles 0x0 iframes. 
●​ Can we somehow safely extend this to same origin frames? 

 

Resources 

 
●​ requestAnimationFrame prollyfill with visibility support: 

https://github.com/greggman/requestanimationframe-fix.js 
●​ HTML processing model: 

https://html.spec.whatwg.org/multipage/webappapis.html#processing-model-9 
 

 

 

 

https://twitter.com/smfr/status/616325089944932352
https://github.com/greggman/requestanimationframe-fix.js
https://html.spec.whatwg.org/multipage/webappapis.html#processing-model-9


PUBLIC 

 

Research 

 
●​ How did Firefox implement this? 

○​ Tracking bug, patch 
○​ Shipping in Firefox 40 
○​ Throttling done a per document level 
○​ Throttles to 1 fps instead of completely disabling rAF 
○​ Visibility check is based on whether the document was painted in the last 

frame. This can cause one extra rAF to go through after the iframe has left 
the screen. Also, one frame is dropped when the iframe becomes visible 
again. 

○​ Problems with first paint – code thinks the document is still invisible 
○​ How does this work when we don’t paint at all? Not sure, but it seems to 

work. Maybe they always trigger paint in rAF? 
●​ How far along are the various visibility APIs and can we reuse them? 

○​ Well, the page visibility API is already shipping. 
○​ The API is limited to to tracking the visibility of the root Document, but there’s 

a w3 thread by seth@mozilla.com (who also implemented rAF throttling) 
about extending it to iframes. 

■​ Earlier identical proposal on public-web-perf. Issue: some APIs are 
tied to page visibility in their specs. 

■​ Alternate suggestion: <iframe autopause> 
■​ Discussion seems to have stalled 

○​ Element visibility API doesn’t seem to exist 
●​ How is visibility determined for animated GIFs? 

○​ https://codereview.chromium.org/1026823002 added the notion of a delayed 
paint invalidation for images 

○​ https://codereview.chromium.org/1145643002 extended it to handle animated 
background images 

○​ LayoutBox/Image::imageChanged() sets the invalidation reason to 
PaintInvalidationDelayedFull 

○​ LayoutBox::invalidatePaintIfNeeded() checks 
LayoutBox::intersectsVisibleViewport() and keeps the invalidation reason as 
DelayedFull unless the box intersects the viewport 

○​ The GIF animation timer only ticks once and is restarted once the image gets 
drawn again 

○​ Uses the skewport/extended viewport by virtue of the compositor drawing a 
little outside the screen 

●​ How does the resource scheduler determine visibility? 
○​ Works on a per-tab basis (client == tab) 
○​ Tab is considered to be active if it is visible or audible 
○​ Doesn’t use per-element visibility or spatial prioritization -- except for images. 

●​ How expensive is it to compute visibility? 

https://bugzilla.mozilla.org/show_bug.cgi?id=1145439
https://hg.mozilla.org/integration/mozilla-inbound/rev/19a79b7400fe
https://developer.mozilla.org/en-US/docs/Web/Guide/User_experience/Using_the_Page_Visibility_API
https://lists.w3.org/Archives/Public/public-whatwg-archive/2015Mar/0229.html
mailto:seth@mozilla.com
https://lists.w3.org/Archives/Public/public-web-perf/2014Jan/0047.html
https://codereview.chromium.org/1026823002
https://codereview.chromium.org/1145643002


PUBLIC 

○​ Doesn’t seem to be too bad since we’re doing it for every animated image 
every time we paint. 

○​ All FrameViews are also already notified when their geometry changes. 
●​ How do we avoid checkerboarding? 

○​ Firefox didn’t seem to worry too much about this since their rAF can be 
delayed by one frame after the iframe becomes visible. 

○​ Made a small test page that measures the time between rAFs. Seems to drop 
up to two frames on Firefox when becoming visible. 

●​ Do we want to suspend rAF completely or just throttle it? 
○​ Intuitively doing animation work for hidden content doesn’t feel sensible. 

Limiting this to cross origin frames should be safe. 
●​ Architecture: how do we reconcile this with spatial scheduling (timers, loading tasks)? 

○​ FrameView viewport visibility observers seem like a good building block. 
 
 

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/layout/LayoutBox.h&l=834
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/layout/LayoutBox.h&l=834

	Throttling Blink’s rendering pipeline for hidden content 
	Introduction 
	Algorithm 
	Cross-origin requirement 
	Visibility determination 
	 
	Throttling update stage 
	Forced layouts 

	Future improvements 
	●​Instead of exact visibility determination, use the compositor’s prepainting region via some kind of PaintObserver. The compositor currently uses an aggressively large prepainting region, limiting the effectiveness of this optimization. If that can be reduced, we could add an intermediate “Soon” visibility state. 
	Open issues 
	Resources 
	 
	 
	 
	 
	Research 


