
Blur Behind UI manual
v.2.1 | Online manual | Store page

1. Designation | 2. Compatibility | 3. Setup | 4. Settings​
5. Canvas render modes | 6. Troubleshooting ​
7. Upgrade from v.1 | 8. Contacts

1. Designation
This package is designed to blur a background under semi-transparent UI elements.

It is done by multipass gaussian blur filter, processed after the selected camera has finished
its rendering. The product of this process is stored as a global texture and can be used by
multiple UI images or texts in overlay canvas almost at the cost of ordinary sprite. It is great
when you draw a big amount of panels and buttons on top of the main game view (eg. HUD),
but it also means that one UI element will not automatically blur another by simply
overlapping it (this effect is possible, though, and described in section 5. Canvas render
modes).

2. Compatibility
The effect uses image effect functionality, so the target platform should at least support
render textures. It generally works on desktops, WebGL, iOS and Android.

If it’s not supported, it will be automatically disabled without causing catastrophic damage.

3. Setup
After importing the package you can examine an example scene from the package. It uses
most of presented features.

To make this effect work from scratch you’ll need to:

1.​ Add the Blur Behind component to a camera (by dragging the script file from the Blur
Behind folder to that gameobject, or via Component/Image Effects/Blur Behind
menu).

2.​ Apply UI material from the Blur Behind folder to some UI Image or Text. Alpha
channel of its sprite/font will define the shape of blurred area.

3.​ Put your actual semi-transparent sprite or text on top of it.

https://docs.google.com/document/d/1DccTuXiiRZWQjV2OJEhfNW0Bu4i78VFzRt19M_uNJgA/edit?usp=sharing
http://u3d.as/j6V

4. Settings

Mode defines how the blur radius and downsampling is set up. Absolute mode is designed
for UI with constant pixel size, and Relative mode is for UI that scales to fit the screen size.

Blur Radius is measured in pixels with Absolute mode and in screen size percents with
Relative. Hereinafter, size means the long side of an image.

Settings field determines how the downsampling and blur iterations count will be defined.
The Manual lets you set all values by yourself. The Standard calculates them automatically,
and is good for constant or fast changing blur radius — it has high performance, but can
produce some image vibrations when blur radius changes slowly. The Smooth uses a higher
iterations count, which suppress most animation artifacts, but has a higher system
requirements.

Downsampling reduces the input image size before blur calculations, which is good both for
performance and reducing blur artifacts. The value of this property has a different meaning
for different modes. In Absolute mode it will divide input image size by the value. In Relative
mode it will reduce input image size to the value.

Blur Iterations is the count of blur calculation passes. The higher value increases the
overall quality greatly, but has a heavy performance impact.

Crop section lets you define, which part of the camera view will be actually blurred and
stored. If your UI covers only a small part of the screen, limiting the blur processing to that
area can greatly improve performance of the effect.

Normalized Rect sets the crop frame in relative scale, pretty much like the camera Viewport
Rect property does. Pixel Offsets adds up to the Normalized Rect, but in absolute scale.

Crop setting examples:

●​ Effect with Normalized Rect set to (X=0.5, Y=0, W=0.5, H=0.5) and all Pixel Offsets
set to 0 will process the bottom-right quarter of the input image.

●​ Effect with Normalized Rect set to (X=0, Y=1, W=1, H=0) and Pixel Offsets set to
(X=0, Y=-50, W=0, H=50) will process only the top 50 pixels of the input image.

http://docs.unity3d.com/Manual/class-Camera.html
http://docs.unity3d.com/Manual/class-Camera.html

Keep in mind, that for the best result the crop frame should extend over UI by the blur radius.

5. Canvas render modes
Screen Space – Camera

This package is primarily designed to work with “Screen Space – Overlay” render mode.

However, if you understand the rendering order enough, you can achieve additional effects
by using “Screen Space – Camera” render mode with multiple cameras. Eg. blurring one UI
layer by another (see the example scene).

The thing is, the Blur Behind component on camera blurs all content the camera has
rendered, with all image effects placed above the Blur Behind component in gameobject
inspector. It also includes all UI canvases with “Screen Space – Camera” mode, which have
this camera as target.

Therefore, to create a multilayer blur effect you will need the following:

1.​ First camera (lowest depth property) with a Blur Behind component. To render the
scene and save it blurred version into a texture.

2.​ Canvas with “Screen Space – Camera” mode, containing UI layer.
3.​ Additional camera, targeted by that canvas, with clear flags set to “Depth Only”,

culling mask to UI-only, and a Blur Behind component attached. To render the UI
layer with blurred content of previous camera and replace the stored texture with new
blurred fullscreen image for later use. Repeat #2 and #3 for all additional layers.

4.​ Final canvas with “Screen Space – Overlay” mode, which contains all UI elements
that should not be blurred by anything on top of it.

If you are not sure about rendering order you’ve got, use the built-in Unity Frame Debugger
tool to inspect the whole rendering process, step by step. You can see there, when exactly
the blurred image is updated and what it contains.

World Space

To properly render the blurred UI in the world space you’ll also need the multicamera setup
(even for a single-layer UI):

1.​ First camera with the culling mask set to non-UI, and a Blur Behind component. To
render the scene without UI and save it blurred version into a texture.

2.​ Additional camera, with identical transform and settings (field of view and clipping
planes are crucial) to the first one, but with “Don’t Clear” clear flags, and UI-only
culling mask. To render the UI with blurred content of previous camera, taking into
account the depth buffer of the scene (occlude UI with geometry).

Non-fullscreen viewport

If the camera that renders a canvas has a non-fullscreen viewport and has no Blur Behind
component, you should attach a Blur Behind Viewport component (from the Blur
Behind/Scripts folder) to that camera. It will set up a correct screen coordinates for UI shader
and will reset them back afterward for overlay canvases.

6. Troubleshooting
●​ If you use a perspective projection to render the UI and rotate some blurred UI

element, you’ll see the distortion of a background image. This issue will be fixed in
the next update. Until then you can replace Blur Behind/Shaders/UI.shader with this.

●​ If instead of desired blurred image you see just one color or some flickering, check if
the crop setting of the Blur Behind component dropped to zeros due scene loading or
version control failure.

7. Upgrade from v.1
If you used the first version of Blur Behind UI and want to update it in your project, be aware,
that some things will not be compatible.

Firstly, you will have to replace all Blur Behind components with the new ones, since their
settings are very different now.

Secondly, there is no Text material anymore. The UI material do both jobs now. To preserve
the references you may keep old materials and just set the new shaders for them.

8. Contacts
If you have any problems or suggestions, please contact me at a.a.saraev@yandex.ru.

Or you can leave a comment right in this online document, so I can publicly answer your
question and improve the manual.

Also, it would be great, if you rate the asset or even write a review on the store page.

And let me know if your product goes live with my effect in it.

http://andrewsaraev.bitbucket.org/assetstore/blur-behind/UI.shader
mailto:a.a.saraev@yandex.ru
https://docs.google.com/document/d/1DccTuXiiRZWQjV2OJEhfNW0Bu4i78VFzRt19M_uNJgA/edit?usp=sharing
http://u3d.as/j6V

	1. Designation
	2. Compatibility
	3. Setup
	4. Settings
	5. Canvas render modes
	6. Troubleshooting
	7. Upgrade from v.1
	8. Contacts

