Практическая работа №6

Тема: Определение параметров водяного пара по таблицам и *s-i* диаграмме. Расчет теплоты и расхода пара.

Цель: Приобретение практических навыков в определении параметров водяного пара по таблицам и s-i диаграмме

Методические пояснения и рекомендации

Таблицы параметров жидкости и сухого насыщенного пара

Для нахождения параметров жидкости и сухого насыщенного пара t_s , v', v'', ρ'' , i', i'', r, s' u s'' практически пользуются специальными таблицами, в которых приводятся значения этих параметров, вычисленные на основании опытов и теоретических исследований.

В приложении Γ приводится таблица параметров насыщенного водяного пара и воды на линии насыщения. В первой колонке приведены значения давлений p, расположенные в порядке их возрастания от 0,001 до 22МПа; в последующих колонках — другие параметры состояния сухого насыщенного пара и кипящей воды при соответствующих давлениях. Во второй колонке приводятся температуры кипения t_s °C; в третьей и четвертой колонках — удельные объемы кипящей воды v' и сухого насыщенного пара v'',м³/кг; в пятой колонке — плотность сухого насыщенного пара ρ'' , кг/м³; в шестой и седьмой колонках — удельная энтальпия воды i' и удельная энтальпия сухого насыщенного пара i'',кДж/кг; в восьмой колонке приводятся значения удельной теплоты парообразования r; кДж/кг. Наконец, в последних двух колонках — девятой и десятой — даются значения удельной энтропии кипящей воды s', кДж /(кг·К) и сухого насыщенного пара s'', кДж /(кг·К).

В приложении Е приводится таблица параметров насыщенного пара, составленная не по давлениям, по температурам.

Параметры состояния влажного насыщенного пара

Температура влажного насыщенного пара равна температуре кипения t_s при том ее давлении, поэтому температуру влажного насыщенного пара при заданном давлении можно находить по таблице параметров сухого насыщенного пара, составленной по давлениям.

Удельный объем влажного насыщенного пара может быть определен как сумма объемов пара xv'' и жидкости (1-x)v', т. е.

$$v_x = x v'' + (1 - x) v'$$
 или $v_x = v' + x(v'' - v')$ (6.1)

Если влажный насыщенный пар имеет большое паросодержание (порядка 0,7 и больше), то объемом жидкости, содержащейся в нем при невысоких давлениях, можно пренебречь, считая, что

$$v_{r} \approx x \, v^{\prime\prime} \tag{6.2}$$

Удельная энтальпия влажного пара i_x определяется, как для смеси пара и жидкости, по уравнению

$$i_x = x i'' + (1-x) i'$$
 (6.3)

или

$$i_x = i' + x (i'' - i') = i' + xr$$
 (6.4)

Удельную энтропию влажного насыщенного пара s_x можно определить по уравнению

$$s_x = s' + x(s'' - s')$$

(6.5)

Таблицы параметров перегретого пара

Удельный объем, удельную энтальпию, удельную энтропию перегретого пара при заданных давлениях и температуре также обычно не подсчитывают,а берут из таблиц параметров перегретого пара или из диаграмм.

В одной из таких таблиц (приложение Д) для перегретого водяного пара в первой колонке приводятся давления пара в порядке их возрастания, начиная от 0,005 до 30 МПа, для которых подсчитаны в таблице значения параметров v, i. и s.В последующих колонках приводятся значения этих параметров для температур, начиная от 0 °C и до 550 °C.

i-s-диаграмма

В теплотехнических расчетах часто пользуются энтропийной диаграммой, в которой по оси ординат отложены значения удельной энтальпии, а по оси абсцисс — удельной энтропии. Для этого чтобы найти изменение энтальпии *i* по такой диаграмме, а следовательно, и удельное количество теплоты,

необходимо измерить лишь длину соответствующего отрезка по оси ординат, что гораздо проще, чем измерять площадь. Эта диаграмма получила название

i - s - диаграммы, схема ее показана на рисунке 6.1..

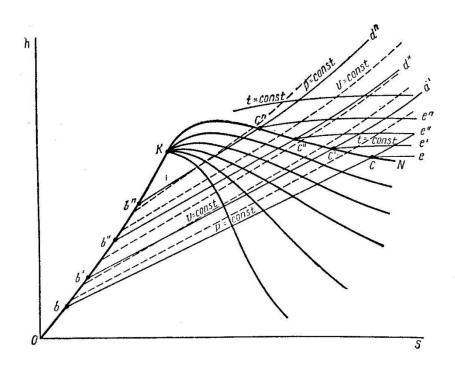


Рисунок 6.1- Схема *i*-s-диаграммы

На нее наносятся пограничные кривые жидкости и пара, кривые постоянных давлений и постоянных паросодержаний. Кроме того, на i-s-диаграмме наносятся кривые постоянных температур.

Так как в области насыщения, как известно, температуры пара при постоянном давлении одинаковы, то изобары в этой области являются одновременно и изотермами. Следовательно, плавные линии этих двух процессов могут совпадать. При переходе же в область перегрева изобары изображаются кривыми, являющимися продолжением изобар — изотерм в области насыщения (кривые c'd', c''d'',...); изотермы же в области невысоких давлений, начиная от кривой сухого насыщенного пара, идут более полого (кривые ce, c'e', c''e'', ...),

На некоторых i-s-диаграммах нанесены также линии удельных объемов (на рисунке 6.1 они показаны пунктиром).

На практике обычно не приходится иметь дело с очень влажными парами, область которых находится в нижней части *i-s*-диаграммы. Поэтому для практических целей пользуются только правой верхней ее частью, что дает возможность выполнить ее в более крупном масштабе и сделать подробной и удобной для пользования (см. приложение Ж).

Исходные данные (задание):

1.Данные для расчетов (по вариантам) взять из таблиц 6.1- 6.2 2.По условиям задач 6.1-6.4 рассчитать требуемые величины. Таблица 6.1 - Данные к задачам 6.1 и 6.2

№ варианта	<i>p</i> , МПа	x	№ варианта	<i>p</i> , МПа	t, °C
1	1,0	0,85	1	3	400
2	1,2	0,75	2	2	300
3	1,4	0,80	3	1,6	300
4	1,6	0,90	4	0,05	200
5	1,8	0,95	5	0,2	400
6	2,0	0,70	6	0,3	160
7	0,8	0,6	7	0,5	240
8	0,6	0,65	8	0,7	200
9	0,5	0,90	9	1,0	300
10	0,4	0,95	10	4,0	160
11	0,3	0,80	11	5,0	200
12	2,5	0,75	12	3.0	200
13	3,0	0,70	13	1,6	400
14	4,0	0,65	14	2,0	400
15	5,0	0,90	15	6,0	160
16	1,0	0,95	16	0,05	240
17	1,2	0,80	17	0.3	240
18	1,4	0,85	18	1,0	400

Таблица 6.2 - Данные к задачам 6.3 и 6.4

№ варианта	<i>р₁,,</i> МПа	x	<i>p</i> ₂ , МПа	№ варианта	т,кг	p_I , МПа	t°C	<i>р</i> ₂ , МПа
1	1	0,9	0,2	1	45	5	550	3
2	1	0,8	0,15	2	40	3	400	2,5
3	1	0,85	0,50	3	35	1	550	0,6
4	2	0,95	0,15	4	50	3	600	2
5	2	0,98	0,20	5	55	2	300	1,5
6	1,5	0,9	0,2	6	30	4	350	2
7	1.5	0,84	0,5	7	45	3	350	1,5
8	2	0,97	0,6	8	50	4	400	2
9	3	0,96	0.5	9	55	2	550	1
10	3	0,93	1	10	60	3	350	1,5
11	1,2	0,85	0,30	11	65	3	400	2
12	4	0,98	0,5	12	45	1,5	450	1
13	3	0,96	1	13	40	1	500	0,7
14	1,5	0,9	0,5	14	50	3	500	2
15	1,0	0,97	0,2	15	60	5	450	3

16	2	0,89	0,6	16	70	4	400	2
17	1	0,9	0,4	17	55	3	500	2
18	1,5	0,94	0,3	18	35	2,5	350	1,5

Задачи

- 6.1 Давление влажного насыщенного водяного пара p, МПа и паросодержание x. Найти удельный объем, удельную энтальпию и удельную энтропию пара.
- 6.2 Найти удельную энтальпию, удельный объем и удельную энтропию водяного пар при давлении p, МПа и температуре t °C.
- 6.3 Водяной пар под давлением p_1 , МПа и паросодержанием x проходит через пароперегреватель, в котором пару сообщается такое количество теплоты при постоянном давлении, что после адиабатного расширения в цилиндре парового двигателя до давления p_2 , МПа он превращается в сухой насыщенный. Найти удельное количество теплоты, которое получает пар в пароперегревателе. Задачу решить по i-s-диаграмме (приложение Ж).
- 6.4 Водяной пар массой m кг при начальных параметрах p_1 ,МПа и t_1 °С охлаждается при постоянном объеме до давления p_2 , МПа. Найти конечную температуру, работу изменения давления, а также количество теплоты, которое нужно отвести от пара. Задачу решить используя i-s-диаграмму (приложение Ж).

Порядок выполнения работы:

- 1.Выполнить задание в соответствии с данными своего варианта (см. таблицы 6.1 и 6.2)
 - 2.Ответить письменно на контрольные вопросы.

Контрольные вопросы

- 1. Увеличивается или уменьшается удельный объем сухого насыщенного пара при повышении его давления?
 - 2. Что такое теплота парообразования?

- 3. Какие существуют параметры состояния влажного насыщенного пара?
- 4. Увеличивается или уменьшается удельный объем влажного насыщенного пара с увеличением паросодержания при постоянном давлении?
 - 5. Что такое критическая температура?
 - 6. Что такое критическая точка?
- 7. Как можно определить состояние пара, если известны его давление и удельный объем?
- 8. Какой из перегретых паров различных давлений, но одинаковых температур имеет большую степень перегрева?

Пример выполнения задания

Пример 6.1

Давление влажного насыщенного водяного пара p=1,6 МПа и паросодержание x=0,9. Найти удельный объем, удельную энтальпию и удельную энтропию пара.

Решение.

В приложении Γ находим, что для сухого насыщенного пара давлением p=1,6 МПа удельный объем v''=0,1238 м³/кг. Следовательно, удельный объем влажного насыщенного пара

$$v_x \approx x \ v'' \approx 0.9 \cdot 0.1238 \ \text{м}^3/\text{к}$$
г = 0.111 м $^3/\text{к}$ г;

удельная энтальпия

$$i_x$$
= i' + x (i'' - i') = i' + xr = (858,3 + 0,9·1935) кДж/кг;

удельная энтропия

$$s_x = s' + x$$
 $(s'' - s') = [2,344 + 0,9 \cdot (6,422 - 2,3440)]$ кДж/(кг·К)=6,014 кДж/(кг·К).

Пример 6.2

Найти удельную энтальпию, удельный объем и удельную энтропию водяного пар при давлении 2МПа и температуре 400 °C.

Решение

Поскольку заданная температура выше температуры насыщения при том же давлении, то заданный пар является перегретым. В приложении Д находим, что для пара, имеющего давление 2 МПа, при температуре 400 °C: i = 3,246 МДж/кг; v = 0,1511 м³/кг и s = 7,122 кДж/(кг·К).

Пример 6.3

Водяной пар массой 1200 кг расширяется адиабатно от 1,4 МПа и 300 $^{\circ}$ С до 0,006МПа. Найти изменение энтальпии в этом процессе и паросодержание в конце расширения. Пример решить по i-s-диаграмме (приложение Ж).

Решение.

Находим на *i-s*-диаграмме для водяного пара точку I, характеризующую начальное состояние пара, на пересечении изобары p=1,4 МПа и изотермы $t_1=300\,^{\circ}\mathrm{C}$.

Опустив из точки l вертикаль до изобары $p_2 = 0,006$ МПа, находим точку 2, характеризующую конечное состояние пара. Устанавливаем, что через эту точку проходит кривая постоянного паросодержания x=0,825. Далее, спроектировав точки l и 2 на ось удельных энтальпий, читаем на ней, что i_1 =3035 кДж/кг, а i_2 =2135 кДж/кг. Следовательно, изменение удельной энтальпии

$$i_t = (i_1 - i_2)_{\text{ад}} = (3035 - 2135) \text{ кДж/кг} = 900 \text{ кДж/кг};$$
 искомая энтальпия $H1 - H2 = m (i_1 - i_2)_{\text{ад}} = 1200 \cdot 900 \text{ кДж} = 1,08 \text{ ГДж}.$

Пример 6.4

Водяной пар массой 50 кг при начальных параметрах p_1 = 3,0 МПа и t_1 =350°C охлаждается при постоянном объеме до давления p_2 = 2.0 МПа. Найти конечную температуру, работу изменения давления, а также количество теплоты, которое нужно отвести от пара. Задачу решить используя i-s-диаграмму (приложение Ж).

Решение.

Находим на *i-s*-диаграмме для водяного пара точку I, характеризующую начальное состояние пара, на пересечении изобары p=3.0 МПа и изотермы $t_I=350\,^{\circ}\mathrm{C}$.

Находим на *i-s*-диаграмме для точки *I* параметры пара:

$$v_I$$
=0,09 м³/кг; i_I =3110 кДж/кг; u_1 = i_I - p_I - v_I =(3,11·10⁶- 3·10⁶·0,09) Дж/кг= 2,84 ·10⁶ Дж/кг= 2,84 МДж/кг.

Из точки 1 опускаемся по изохоре $v=M^3/\kappa\Gamma$ до пересечения этой изохоры с изобарой $p_2=2.0$ МПа (точка 2) и определяем конечные параметры пара:

$$v_2 = v_1 = 0,09 \text{ м}^3 / \text{кг};$$
 $i_2 = 2630 \text{ кДж/кг};$ $u_2 = i_2 - p_2 - v_2 = = (2,63 \cdot 10^6 - 2 \cdot 10^6 \cdot 0,09) \text{ Дж/кг} = 2,45 \cdot 10^6 \text{ Дж/кг} = 2,45 \text{ МДж/кг};$ $x = 0,91 \text{ (в конечном состоянии пар влажный)}.$

Количество отводимой теплоты

$$Q_{1-2}=m(u_2-u_1)=50 (2,45-2,84) 10^6$$
Дж = -19,5 МДж.

(Знак минус здесь указывает на то, что теплота отводится в количестве 19,5 МДж).

Работа изменения давления

$$W_{1-2} = V(p_1 - p_2) = mv(p_1 - p_2) = 50 \ 0.09 \ (3.0 - 2.0) \ 10^6 Дж = 4.5 \ МДж.$$

Приложение Г

Параметры насыщенного водяного пара по давлениям

	_								
			ט",		<i>i'</i> ,	i	r,	s'	s",
<i>p</i> , МПа	t_s . ${}^{0}\mathrm{C}$	<i>v′</i> , м³/кг	м ³ /кг	$ ho$, м 3 /кг	кДж/кг	",кД	кДж	кДж/(кг	кДж/
			WI / KI		кдж/кі	ж/кг	/кг	·K)	кг∙К)
1	2	3	4	5	6	7	8	9	10
0,001	6,92	0,0010001	129,9	0,00770	29,32	2513	2484	0,1054	8,975
0,002	17,51	0,0010014	66,97	0,01493	73,52	2533	2459	0,2609	8,722
0,003	24,10	0,0010028	45,66	0,02190	101,04	2545	2444	0,3546	8,576
0,004	28,98	0,0010041	34,81	0,02873	121,42	2554	2433	0,4225	8,473
0,005	32,88	0,0010053	28,19	0,03547	137,83	2561	2423	0,4761	8,393
0,006	36,18	0,0010064	23,74	0,04212	151,50	2567	2415	0,5207	8,328
0,008	41,54	0,0010085	18,10	0,05525	173,9	2576	2402	0,5927	8,227
0,010	45,84	0,0010103	14,68	0,06812	191,9	2584	2392	0,6492	8,149
0,011	47,72	0,0010111	13,40	0,07462	199,7	2588	2388	0,6740	8,116
0,012	49,45	0,0010119	12,35	0,08097	207,0	2591	2384	0,6966	8,085
0,014	52,58	0,0010133	10,69	0,09354	220,1	2596	2376	0,7368	8,031
0,016	55,34	0,0010147	9,429	0,10600	231,7	2601	2369	0,7722	7,984
0,018	57,82	0,0010159	8,444	0,1185	241,9	2605	2363	0,8038	7,944
0,020	60,08	0,0010171	7,647	0,1308	251,4	2609	2358	0,8321	7,907
0,025	64,99	0,0010199	6,202	0,1612	272,0	2618	2346	0,8934	7,830
0,030	69,12	0,0010222	5,226	0,1913	289,3	2625	2336	0,9441	7,769
0,050	81,35	0,0010299	3,239	0,3087	340,6	2645	2204	1,0910	7,593
0,075	91,80	0,0010372	2,216	0,4512	384,5	2663	2278	1,2130	7,456
0,10	99,64	0,0010432	1,694	0,5903	417,4	2675	2258	1,3026	7,360
0,12	104,81	0,0010472	1,429	0,6999	439,4	2683	2244	1,3606	7,298
0,14	109,33	0,0010510	1,236	0,8088	458,5	2690	2232	1,4109	7,246

0,16	113,32	0,0010543	1,091	0,9164	475,4	2696	2221	1,4550	7,202
0,20	120,23	0,0010605	0,8854	1,129	504,8	2707	2202	1,5302	7,127
0,26	128,73	0,0010685	0,6925	1,444	540,9	2719	2178	1,621	7,040
0,30	133,54	0,0010733	0,6057	1,651	561,4	2725	2164	1,672	6,992
0,40	143,62	0,0010836	0,4624	2,163	604,7	2738	2133	1,777	6,897
								Про	должение

р, МПа	t _s . °C	<i>v'</i> ,, м³/кг	υ",, м³/кг	р, м ³ /кг	<i>i'</i> ,кДж/ кг	<i>i</i> '',кД ж/кг	<i>r,</i> кДж/кг	s′, кДж/(кг ·K)	s", кДж/ (кг·К)
1	2	3	4	5	6	7	8	9	10
0,50	151,84	0,0010927	0,3747	2,669	640,1	2749	2109	1,860	6,822
0,60	158,84	0,0011007	0,3156	3,169	670,5	2757	2086	1,931	6,761
0,80	170,42	0,0011149	0,2403	4,161	720,9	2769	2048	2,046	6,663
1,0	179,88	0,0011273	0,1946	5,139	762,7	2778	2015	2,138	6,587
1.2	187,95	0,0011385	0,1633	6,124	798,3	2785	1987	2,216	6,523
1,4	195,04	0,0011490	0,1408	7,103	830,0	2790	1960	2,284	6,469
1,6	201,36	0,0011586	0,1238	8,080	858,3	2793	1935	2,344	6,422
1.8	207,10	0,0011678	0,1104	9,058	884,4	2796	1912	2,397	6,379
2,0	212,37	0,0011766	0,09958	10,041	908,5	2799	1891	2,447	6,340
2,5	223,93	0,0011972	0,07993	12,51	961,8	2802	1840	2,554	6,256
3,0	233,83	0,0012163	0,06665	15,00	1008,3	2804	1796	2,646	6,186
4,0	250,33	0,0012520	0,04977	20,09	1087,5	2801	1713	2,796	6,070
5,0	263,91	0,0012857	0,03944	25,35	1154,4	2794	1640	2,921	5,973
6,0	275,56	0,0013185	0,03243	30,84	1213,9	2785	1570,8	3,027	5,890
7,0	285,80	0,0013510	0,02737	36,54	1267,4	2772	1504,9	3,122	5,814
8,0	294,98	0,0013838	0,02352	42,52	1317,0	2758	1441,1	3,208	5,745
9,0	303,32	0,0014174	0,02048	48,83	1363,7	2743	1379,3	3,287	5,678
10,0	310,96	0,0014521	0,01803	55,46	1407,7	2725	1317,0	3,360	5,615
11,0	318,04	0,001489	0,01592	62,58	1450,2	2705	1255,4	3,430	5,553
12,0	324,63	0,001527	0,01426	70,13	1491,1	2685	1193,5	3,496	5,493
13,0	330,81	0,001567	0,01277	78,30	1531,5	2662	1130,8	3,561	5,432

14,0	336,63	0,001611	0,01149	87,03	1570,8	2638	1066,9	3,623	5,372
15,0	342,11	0,001658	0,01035	96,62	1610	2611	1001,1	3,684	5,310
16,0	347,32	0,001710	0,009318	107,3	1650	2582	932,0	3,746	5,247
18,0	356,96	0,001837	0,007504	133,2	1732	2510	778,2	3,871	5,107
20,0	365,71	0,00204	0,00585	170,9	1827	2410	583,0	4,015	4,928
22,0	373,7	0,00273	0,00367	272,5	2016	2168	152,0	4,303	4,591
	I	1	I	l	l	l	l I	I	

Приложение Д

Параметры перегретого водяного пара

<i>p</i> ,]	МПа	$t = 0 {}^{0}\mathrm{C}$	$t = 60 {}^{0}\text{C}$	$t=100{}^{0}\mathrm{C}$	$t=160{}^{\circ}\text{C}$	$t = 200 {}^{0}\text{C}$
0,005	$\overline{}$	0,0010002	30,73	34,43	39,98	43,68
	i	0,0	2612	2668	2803	2880
	S	0,0000	8,549	8,764	9,047	9,219
0,010	$oldsymbol{v}$	0,0010002	15,35	17,20	19,98	21,83
	i	0,0	2611	2688	2802	2879
	S	0,0000	8,227	8,442	8,727	8,897
0,020	\boldsymbol{v}	0,0010002	0,0010171	8,584	9,977	10,905
	i	0,0	251,1	2687	2801	2879
	S	0,0000	0,8307	8,120	8,406	8,576
0,030	v	0,0010002	0,0010171	5,713	6,645	7,264
	i	0,0	251,1	2685	2801	2878
	S	0,0000	0,8307	7,931	8,217	8,388
	$oldsymbol{v}$	0,0010002	0,0010171	4,282	4,982	5,447
0,040	i	0,0	251,1	2684	2800	2878
	S	0,0000	0,8307	7,798	8,086	8,256
	\boldsymbol{v}	0,0010002	0,0010171	3,420	3,982	4,355
0,050	i	0,1	251,1	2683	2799	2877
	S	0,0000	0,8307	7,693	7,981	8,152
	\boldsymbol{v}	0,0010001	0,0010171	1,695	1,984	2,172
0,10	i	0,1	251,1	2676	2796	2875
	S	0,0000	0,8307	7,361	7,654	7,828
	$oldsymbol{v}$	0,0010000	0,0010170	0,0010434	0,9840	1,080
0,20	i	0,2	251,2	419,0	2790	2870
	S	0,0000	0,8307	0,1367	7,324	7,50!
	$oldsymbol{v}$	0,0010000	0,0010170	0,0010434	0,6512	0,7161
0,30	i	0,3	251,3	419,1	2783	2864
	S	0,0000	0,8304	1,3066	7,126	7,306
0,50	$oldsymbol{v}$	0,0009999	0,0010169	0,0010433	0,3839	0,4249
	i	0,5	251 ,4	419,1	2767	2854
	S	0,0000	0,8302	1,3063	6,864	7,056
0,70	$\overline{}$	0,0009998	0,0010168	0,0010432	0,0011020	0,2998
	i	0,7	251,6	419,1	675,3	2844
	s	0,0000	0,8301	1,3061	1 ,941	6,884

v - $_{\rm B}$ м 3 /кг; i -в кДж/кг, s - в кДж/ (кг·К) Приложение Д

		$\frac{7 - B M / KI, \iota}{}$	-в кдж/кі, х	у - в кдж/ (к і	ту прил	эжение д
t =240 °C	<i>t</i> = 300 °C	<i>t</i> = 360 °C	<i>t</i> = 400 °C	<i>t</i> = 440 °C	$t = 500 ^{\circ}\text{C}$	<i>t</i> = 550 °C
47,37	52,92	58,47	62,16	65,85	71,39	76,01
2958	3077	3198	3280	3363	3490	3598
9,376	9,595	9,796	9,921	10,042	10,214	10,351
9,570	9,393	9,790	9,921	10,042	10,214	10,551
23,68	26,46	29,23	31,08	32,93	35,70	38,01
2957	33177	3198	3280	3363	3490	3598
9,056	9,274	9,475	9,601	9,722	9,895	10,031
11,832	13,220	14,606	15,530	16,45	17,82	18,99
2957	3077	3198	3280	3363	3490	3598
8,735	8,954	9,155	9,281	9,402	9,575	9,713
7,882	8,809	9,734	10,351	0,967	11,891	12,661
2956	3076	3198	3280	3363	3490	3598
8,547	8,766	8,967	9,093	9,215	9,388	9,526
5,912	6,608	7,301	7,765	8,228	8,921	9,498
2956	3076	3197	3279	3362	3490	3597
8,415	8,635	8,835	8,962	9,083	9,256	9,393
	ŕ	,		·	ŕ	
4,726	5,284	5,841	6,212	6,582	7,136	7,598
2956	3076	3197	3279	3362	3489	3597
8,311	8,531	8,731	8,858	8,979	9,152	9,290
2,359	2,638	2,918	3,102	3,288	3,565	3,797
2954	3074	3195	3278	3361	3488	3596
7,988	8,211	8,414	8,541	8,661	8,833	8,969
1 175	1 216	1 457	1.540	1 6/1	1 701	1 907
1,175 2950	1,316 3071	1,457 3194	1,549 3276	1,641 3360	1,781 3487	1,897 3595
		8,092				
7,663	7,887		8,219	8,340	8,512	8,648
0,7802	0,8750	0,9690	1,032	1,094	1,187	1,264
2946	3068	3192	3275	3359	3486	3594
7,470	7,695	7,902	8,030	8,151	8,324	8,460
0.4644	0.5224	0.5704	0.6172	0.6540	0.7100	0.7576
0,4644	0,5224 3062	0,5794	0,6173	0,6548	0,7109	0,7576 3592
				3356	3484	
7,224	7,454	7,662	7,791	7,913	8,086	8,223
0,3290	0,3711	0,4124	0,4396	0,4667	0,5069	0,5403
2929	3056	3183	3268	3353	3482	3598
7,058	7,291	7,502	7,632	7,755	7,929	8,065
	ĺ					ĺ
I	l	I	I	l		l

p, Ml	Па	$t=0$ 0 C	$t = 60 {}^{0}\text{C}$	t=100 °C	t=160 °C	$t = 200$ ${}^{0}C$
	v	0,0009996	0,0010166	0,001°'30	0,0011018	0,2060
1,0	i	1,0	251,8	4 19,	675,4	2827
	S	0,000	0,8298	1,3008	1 ,941	6,692
	v	0,0009994	0,0010163	0,0010426	0,0011013	0,001156 5
1,6	i	1,6	252,2	419,7	675,7	852,4
	S	0,000	0,8296	1,3052	1,940	2,329
	v	0,0009991	0,0010161	0,0010424	0,0011011	0,001156
2,0	i	2,0	252,6	420,1	675,9	852,4
	S	0,0000	0,8294	1,3048	1,939	2,328
	\boldsymbol{v}	0,0009986	0,0010157	0,0010419	0,0011004	0,001155
3,0	i	3,0	253,5	420,9	676,4	852,6
	S	0,000	0,8290	1,3038	1,938	2,326
	v	0,0009981	0,0010152	0,0010414	0,0010997	0,001154
4,0	i	4,0	254,4	42,7	677,0	853,0
,	S	0,0002	0,8282	1,3030	1,936	2,324
	\boldsymbol{v}	0,0009976	1 '	0,0010408	0,0010990	0,001153
5,0	i	5,1	255,3	422,5	677,7	853,6
- ,-	S	0,0004	0,8273	1,3020	1,935	2,332
	v	0,0009971	0,0010143	0,0010403	0,0010983	0,001152
6,0	i	6,1	256,1	423,3	678,4	854,0
,	S	0,0004	0,8268	1,3012	1,934	2,320
	v	0,0009966	0,0010139	0,0010400	0,0010977	0,001151
7,0	i	7,1	256,9	424,1	679,0	854,5
,	S	0,0004	0,8263	1,3003	1.933	2,319
	\boldsymbol{v}	0,0009961	0,0010134	0,0010398	0,0010972	0,001150
8,0	i	8,1	257,8	424,9	679,6	855,0
-,-	S	0,0004	0,8260	1,2996	1,931	2,317
	v	0,0009956	0,0010129	0,0010393	0,0010966	0,001149
9,0	i	9,1	258,7	425,7	680,3	855,5
,	s	0,0004	0,8253	1,2988	1,930	2,316

	\boldsymbol{v}	0,0009951	0,0010125	0,0010386	0,0010956	0,001148
						2
10,0	i	10,1	259,6	426,5	681,0	856,0
	S	0,0004	0,8247	1,2982	1,929	2,314
	$oldsymbol{v}$	0,0009904	0,0010083	0,0010339	0,0010891	0,001139
						3
20,0	i	20,1	268,1	434,2	687,4	860,6
	S	0,0013	0,8188	1,2909	1,919	2,299
	$oldsymbol{v}$	0,0009857	0,0010041	0,0010293	0,0010825	0,001130
						5
30,0	i	30,1	276,5	441,9	693,6	865,4
	S	0,0013	0,8140	1,2834	1,908	2,287

Продолжение

					. 11	одолжение
$t = 240 ^{\circ}\text{C}$	$t = 300 ^{\circ}\text{C}$	<i>t</i> = 360 °C	<i>t</i> = 400 °C	t = 440°C	$t = 500 ^{\circ}\text{C}$	$t = 550 {}^{\circ}\text{C}$
0,2274	0,2578	0,2871	0,3065	0,3255	0,3539	0,3776
2918	3048	3177	3263	3349	3479	3588
6,877	7,116	7,330	7,461	7,585	7,761	7,898
0,1382	0,1585	0,1775	0,1899	0,2021	0,2201	0,2350
2893	3030	3164	3253	3341	3472	3582
6,622	6,877	7,098	7,233	7,360	7,537	7,675
0,1084	0,1255	0,1410	0,1511	0,1609	0,1755	0,1875
2875	3019	3156	3246	3335	3468 7,429	3578
6,491	6,757	6,985	7,122	7,251		7,569
0,06826	0,08119	0,09230	0,09929	0,1061	0,1161	0,1243
2823	2988	3135	3229	3321	3456 7,231	3569
6,225	6,530	6,773	6,916	7,048		7,373
0,0012280	0,05888	0,06781	0,07337	0,07870	0,08642	0,09270
1037,4	2955	3113	3211	3306	344 5	3560
2,698	6,352	6,613	6,762	6,900	7,087	7,231
0,0012264	0,04539	0,05316	0,05781	0,06224	0,06858	0,07370
1037,4	2920	3090	3193	3291	3433 6,974	3550
2,696	6,200	6,483	6,640	6,781		7,120
0,0012249	0,03620	0,04334	0,04742	0,05124	0,05667	0,06103
1037,6	2880	3067	3174	3275	3421 6,878	3540
2,693	6,060	6,371	6,535	6,681		7,028
0,0012235	0,02948	0,03630	0,03997	0,04338	0,04817	0,05197
1037,8	2835	3042	3155	3259	3409 6,795	3530
2,591	5,925	6,270	6,442	6,593		6,947

0,0012221	0,02429	0,03098	0,03438	0,03746	0,04177	0,04516
1037,9	2784	3017	3135	3244	3397 6,722	3520
2,688	5,788	6,177	6,358	6,515		6,876
0,0012207	0,0014016	0,02678	0,03001	0,03286	0,03680	0,03988
1038,1	1344,3	2989	3114	3227	3386 6,656	3510
2,686	3,249	6,089	6,280	6,443		6,813
0,0012185	0,0013970	0,02337	0,02646	0,02915	0,03281	0,03566
1038,3	1342,2	2958	3093	3211	3372 6,596	3499
2,684	3,244	6,002	6,207	6,377		6,756
0,0012056	0,0013598	0,001824	0,00998	0,01224	0,01478	0,01653
1040,3	1333,2	1739	2816	3019	3238 6,144	3390
2,664	3,204	3,876	5,553	5,847		6,339
0,0011931	0,0013311	0,001634	0,00283	0,00621	0,00869	0,01016
1042,9	1329,0	1676	2155 4,476	2743	3073 5,799	3268
2,647	3,171	3,747		5,340		6,045