

BASIC INFORMATION
Name: Ashik Meerankutty

Major: Computer Science and Engineering,

University: College of Engineering Adoor

Github: @ashikmeerankutty

Website: https://mrdevops.co

Email: ashik9591@gmail.com

Phone: +91 9995736582

Postal Address: Shainy Manzil, Chottupara P.O, 685552, Kerala India

Elastic Auto Docs
AUTOMATIC DOCUMENTATION SYSTEM FOR TYPESCRIPT COMPONENTS

Abstract
A better automatic system for documenting EUI TypeScript components that extract the
acceptable values for each prop on the API. This would be done through automatic
transversal of the EUI components itself, combined with the type values from TS and inline
comments.

Comparisons
The docs generated for `EuiToggle` toggle component by various tools

Existing
The tool used by Eui uses an old version of `babel-plugin-react-docgen: 3.1.0` that uses a
lower version of` `react-docgen: 4.1.0` that only supports javascript and flow and not
typescript.
For supporting typescript by `react-docgen` a custom babel plugin is used to add PropType
to typescript components. This method is good but a lot of manual addition has to be done
for new types.
The latest version of `react-docgen` supports typescript and flow, but has many demerits.

Sample output: https://pastebin.com/tzd8rUtG

https://github.com/ashikmeerankutty
https://mrdevops.co
mailto:ashik9591@gmail.com
https://github.com/elastic/eui/blob/master/src/components/toggle/toggle.tsx
https://github.com/reactjs/react-docgen
https://github.com/elastic/eui/tree/master/scripts/babel/proptypes-from-ts-props
https://github.com/reactjs/react-docgen
https://pastebin.com/tzd8rUtG

Demerits of latest version of `react-docgen`

●​ react-docgen will not be able to grab the type definition if the type is imported or
declared in a different file.This is a major drawback as types such as `CommonProps`
is used in almost all components.

​ https://github.com/reactjs/react-docgen#flow-and-typescript-support
●​ In functional components we have to use `props:Type` format otherwise the parser

doesn’t work.

export const EuiToggle: React.SFC<EuiToggleProps> = ({​
 id,​
 className,​
 checked,​
 children,​
 inputClassName,​
 isDisabled,​
 label,​
 name,​
 onChange,​
 title,​
 help,​
 value,​
 'data-test-subj': dataTestSubj,​
 ...rest​
}) => {

Has to be converted to

export const EuiToggle: React.SFC<EuiToggleProps> = (props: EuiToggleProps) => {​
 const {​
 id,​
 className,​
 checked,​
 children,​
 inputClassName,​
 isDisabled,​
 label,​
 name,​
 onChange,​
 title,​
 help,​
 value,​
 "data-test-subj": dataTestSubj,​
 ...rest​
 } = props;

https://github.com/reactjs/react-docgen#flow-and-typescript-support

Other similar libraries

Extract React Types: atlassian/extract-react-types

The `extract-react-types` package is used by atlaskit by Atlassian however the response from
this is better than the existing one but it posses some major drawbacks such as in the case
of EuiToggle it can’t find the types of ToggleType hence it breaks and doesn’t produce an
output.

Sample output: https://pastebin.com/seGzrA3m

Babel React Docgen: storybook/babel-plugin-react-docgen.

This is the latest version of `babel-plugin-react-docgen` and it supports the latest version of
`react-docgen` that supports typescript. The resulting `docgenInfo` for typescript
components now contains a ` tsType` field as shown in the sample output that gives
information about the typescript type and also it parses description information from the
comments perfectly. As the Eui depends on the leading comment as the description of the
prop. This tool is perfect for the descriptions. ` react-docgen ` will not be able to grab the
type definition if the type is imported or declared in a different file. So a custom method
has to be found to resolve this issue.

Sample output: https://pastebin.com/YJLp1XbQ

React Docgen Typescript: https://github.com/styleguidist/react-docgen-typescript

This is so far the best method I have found. The results are pretty satisfying. We could use a
method somewhat similar to that of `react styleguidist` uses to fetch the data. We could
extend this tool as per our needs. We might need to create a babel plugin to inject the
docs info generated by this library to our components, details regarding this is explained in
the next section.

Sample output with HTML props: https://pastebin.com/3K0utNS3
Sample output without HTML props: https://pastebin.com/y4ZgTrRN

While removing the HTML props we could whitelist some HTML props. Two methods can
be used for the same:

1.​ By whitelisting the required props inside the plugin
 ​ Eg:

​
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe
950068055a9051fbc8828b6ebd3f/plugin/index.js#L33

Here `className` is whitelisted and all other html props are omitted. Also in the
same manner we could omit or include `fileNames`

https://github.com/atlassian/extract-react-types
https://pastebin.com/seGzrA3m
https://github.com/storybookjs/babel-plugin-react-docgen
https://github.com/reactjs/react-docgen
https://pastebin.com/YJLp1XbQ
https://github.com/styleguidist/react-docgen-typescript
https://pastebin.com/3K0utNS3
https://pastebin.com/y4ZgTrRN
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe950068055a9051fbc8828b6ebd3f/plugin/index.js#L33
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe950068055a9051fbc8828b6ebd3f/plugin/index.js#L33

2.​ By using `commonProps` as used by Eui.
Eg:
Here `EuiToastProps` interface extends `commonProps`

https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe
950068055a9051fbc8828b6ebd3f/src/components/toast/toast.tsx#L18

The docs generated will have these `commonProps`
https://ashikmeerankutty.github.io/react-docgen-babel-plugin/

The only thing to note is the commonProps must come before HTML props while
extending some interfaces or types.

Also we could mention if the component inherits props from a HTML element by showing if
the component supports HTML attributes by adding components to an array if it supports HTML
attributes and adding a boolean key `hasHtml` that equals true to docs info if the component is
in the array and added this key to generated docsInfo.

This method will be similar to :

https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/8873c1601793884e258c
8c0a6c35c156b51c4e36/plugin/index.js#L21-L52

Proposed System

The proposed system consists of a new babel plugin that can add the generated docs for all
`ts` | `tsx` files and inject the info to the component itself so that we can access that
information right inside the react component itself.

●​ The docs info for the `ts` | `tsx` files will be generated with React Docgen Typescript
parser.

●​ By default the parser supports exported types.

​ For Eg:

https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/7c236292341
55d510f5bfa6d4d3806f4899ddf67/src/components/toast/toast.tsx#L5

Here `IconType` is exported from another file.

The output of the parser can be seen here:

https://ashikmeerankutty.github.io/react-docgen-babel-plugin/

Under the `Toast Info` on the props ​ `iconType` shows the exported props.

https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe950068055a9051fbc8828b6ebd3f/src/components/toast/toast.tsx#L18
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/051297a50ffe950068055a9051fbc8828b6ebd3f/src/components/toast/toast.tsx#L18
https://ashikmeerankutty.github.io/react-docgen-babel-plugin/
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/8873c1601793884e258c8c0a6c35c156b51c4e36/plugin/index.js#L21-L52
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/8873c1601793884e258c8c0a6c35c156b51c4e36/plugin/index.js#L21-L52
https://github.com/styleguidist/react-docgen-typescript
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/7c23629234155d510f5bfa6d4d3806f4899ddf67/src/components/toast/toast.tsx#L5
https://github.com/ashikmeerankutty/react-docgen-babel-plugin/blob/7c23629234155d510f5bfa6d4d3806f4899ddf67/src/components/toast/toast.tsx#L5
https://ashikmeerankutty.github.io/react-docgen-babel-plugin/

●​ We could then inject the generated docs info to our components with our new
custom babel plugin, this will be similar to what Babel React Docgen plugin does.

Challenges
The docs info produced by React Docgen Typescript has the following demerits :

●​ If `strict: true` is enabled in tsconfig then an `undefined` is appended to all types
that are not `required`.

Before

​

Removing `strict: true`

http://storybook/babel-plugin-react-docgen
https://github.com/styleguidist/react-docgen-typescript

​

​

When removing `strict: true` some types are not expanded.
​
​ Possible fixes:

●​ Parse the type string and remove the undefined from the end if the prop is
not required.

Preview of Work

Generated props for EuiToggle and EuiToast

Plugin Repo: https://github.com/ashikmeerankutty/react-docgen-babel-plugin

Demo: https://ashikmeerankutty.github.io/react-docgen-babel-plugin/

Schedule of Deliverables

Phase 0: Community Bonding Period (May 4 – June 1)

●​ During the community bonding, the main focus will be to frame a roadmap for the
project with the guidance of the mentor.

●​ This period will also be used to study the architecture of ‘Elastic EUI’ and to figure out a
concrete plan for implementing the system using discussions.

●​ This time will be used to discuss and solve the challenges of the proposed system.

●​ Documenting the test cases that plugin should handle. The test cases will also include
all the issues faced by the current eui docs system.

https://github.com/ashikmeerankutty/react-docgen-babel-plugin
https://ashikmeerankutty.github.io/react-docgen-babel-plugin/

Phase 1: Coding Period 1 (June 1 – July 3)

Week 1 (June 1 - June 6)

●​ Development of the custom babel plugin which injects the docs info generated from
the react-docgen-typescript to the `ts` and `tsx` components.

●​ Tests will be written for the test cases documented during the community bonding
period.

Week 2 (June 7 - June 13)

●​ Continue development of the babel plugin.

●​ Initial version of the plugin will be ready by the end of this week.

●​ Initial testing will be done with some small components in eui.

●​ Documenting and fixing the bugs arose during the testing.

Week 3 (June 14 - June 20)

●​ Testing the plugin with some big components in the eui.

●​ Documenting and fixing the bugs arose during this testing.

Week 4 (June 21 - June 27)

●​ Fix all the remaining bugs.

●​ A production ready version of the plugin will be ready by this period.

First Evaluation Period

Phase 2: Coding Period 2 (July 3 – July 27)

Week 1 (July3 - July 11)

●​ Add the custom babel plugin to the eui docs.

●​ Tweaks that should be made for the new plugin to work in eui docs.

●​ Verify that the docs info is injected to all components.

●​ Fix any issues, if there is, injecting the docs info to components.

Week 2 (July12 - July 18)

●​ Make necessary changes to the Guide Section page to use new docs info.

●​ Verify if props generated by all the components are correct

●​ Fix any bugs.

Week 3 (July19 - July 25)

●​ Buffer week for any unexpected issues.

Second Evaluation Period

Phase 3: Coding Period 3 (July 31 – August 24)

Week 1 (July 31 - August 8)

●​ Convert the `src-docs` project to typescript.

●​ During the conversion the existing docs system will be removed as it is not necessary.

Week 2 (August 9 - August 15)

●​ Continue conversion of docs to typescript and removal of the old docs system.

Week 3 (August 16 - August 22)

●​ Test the whole project for bugs.

●​ Document all the changes made.

Week 4 (August 23 - August 29)

●​ Buffer week for any unexpected issues.

Final Evaluation Period

Phase 4: Final Evaluation (August 31)

All documentation, modules, and tests will be uploaded and make changes based upon the
feedback of the mentor. All the deliverables promised for GSoC will be provided by this
stage.

Availability

I have 4 university exams between May 18 and June 15. These exams may be postponed as
a result of covid-19. Since the exam timetable is not published I can’t say the exact days I
will be unavailable. Exams usually take 2 weeks. So I won’t be available for 2 weeks
between May 18 and June 15. July and August I will be completely free.

Pull Requests to EUI

1.​ Added props to highlight all matches in EuiHighlight

2.​ Added prepend and append to EuiComboBox

3.​ Fixed data grid break on invalid schema

4.​ Added isSortable to Datagrid columns

5.​ Adding automated accessibility tests for layout pages

6.​ Typo fix in EuiDataGrid docs

7.​ Inherit commonly used data on relative tab on EuiSuperDatePicker

8.​ Inherit selected value to quick select in EuiSuperDatePicker

9.​ Added prepend and append support for EuiFieldPassword

10.​EuiSuperDatePicker should show tooltip for the popover close event

11.​Fixed EuiSuperDatePicker "End date" popover shows wrong relative time

12.​Focus trap requires two clicks when focus is on EuiSelect

13.​Fixed EuiSuperDatePicker input focus.

Pull Requests to Kibana

1.​ Create empty string filters when value not specified

https://github.com/elastic/eui/pull/2957
https://github.com/elastic/eui/pull/3003
https://github.com/elastic/eui/pull/2955
https://github.com/elastic/eui/pull/2952
https://github.com/elastic/eui/pull/2995
https://github.com/elastic/eui/pull/3114
https://github.com/elastic/eui/pull/3106
https://github.com/elastic/eui/pull/3105
https://github.com/elastic/eui/pull/3122
https://github.com/elastic/eui/pull/3127
https://github.com/elastic/eui/pull/3132
https://github.com/elastic/eui/pull/3190
https://github.com/elastic/eui/pull/3154
https://github.com/elastic/kibana/pull/57442

	BASIC INFORMATION
	Elastic Auto Docs
	Abstract
	Comparisons
	Existing
	Demerits of latest version of `react-docgen`

	Other similar libraries
	Extract React Types: atlassian/extract-react-types
	Babel React Docgen: storybook/babel-plugin-react-docgen.
	React Docgen Typescript: https://github.com/styleguidist/react-docgen-typescript

	Proposed System
	Challenges
	​
	Preview of Work
	Schedule of Deliverables
	Phase 0: Community Bonding Period (May 4 – June 1)
	Phase 1: Coding Period 1 (June 1 – July 3)
	Week 1 (June 1 - June 6)
	Week 2 (June 7 - June 13)
	Week 3 (June 14 - June 20)
	Week 4 (June 21 - June 27)

	First Evaluation Period
	Phase 2: Coding Period 2 (July 3 – July 27)
	Week 1 (July3 - July 11)
	Week 2 (July12 - July 18)
	Week 3 (July19 - July 25)

	Second Evaluation Period
	Phase 3: Coding Period 3 (July 31 – August 24)
	Week 1 (July 31 - August 8)
	Week 2 (August 9 - August 15)
	Week 3 (August 16 - August 22)
	Week 4 (August 23 - August 29)

	Final Evaluation Period
	Phase 4: Final Evaluation (August 31)

	Availability
	Pull Requests to EUI
	Pull Requests to Kibana

