
Workshop on workflow languages for
HEP analysis (3-5 April 2024)

Day 1, Wednesday 3rd April

Workshop introduction
Presenter(s): Matthew Feickert

●​ Focus of workshop on engaging both communities and facilitating discussion
●​ How do WLs fit into/together with HEP analysis culture
●​ Considerations for workflows:

○​ Bespoke environments for analysis (e.g., containerisation support, what
runtimes exist)

○​ Standalone from analysis (i.e., separate repos for the workflow and analysis
code)

○​ Support for heterogeneous computing infrastructures (distributed computing,
non-CPU architectures)

○​ Graph dynamicism: can graph be computed (efficiently) without neat (i.e.,
known) graph size?

●​ REANA platform for HEP, want to leverage going forward
●​ Many challenges:

○​ We *can* run workflows at CERN, but...
○​ how do we promote organic (i.e., bottom-up rather than top-down) adoption of

WLs (see Open Science pyramid)
●​ TODO: Link summary paper that was done on workflow languages in HEP

Snakemake overview
Presenter(s): Johannes Köster

●​ Analysis becomes difficult to do by hand at scale, especially difficult then to
reproduce

○​ Reproducibility, transparency and adaptability key goals of modern analysis
●​ Development

○​ Accepted as a NumFOCUS sponsored project for sustained development and
best dev practices

●​ Boilerplate-free implementation for scripts allows for closer script-Snakemake
integration

○​ The
●​ Wrappers that call out to other workflows in central repos

○​ Do people in bioinformatics end up using these as centralised tooling
workflows?

○​ Have multiple categories that can tag things by fields
●​ Integration for “external” workflows enables separation of code and workflow, and

extension of existing workflows

https://numfocus.org/sponsored-projects

●​ Job grouping simplifies DAG optimisation without loss of modularity
●​ Conda environment integration (yaml specification of dependencies)

○​ Can it use conda-lock lock files?
○​ Would podman be allowed? What would be required in the future?
○​ --containerize translates conda environment(s) into e.g. a Dockerfile

●​ HTML report generation for workflow documentation
●​ Service jobs

○​ Could allow for Dask?
●​ Snakemake 8 includes most functionality from in 7

○​ XRootD snakemake plugin
Questions

●​ What HPC integration is available?
○​ Generic plugin for anything that receives submission scripts, additionally

specific plugins for specific services (e.g., Slurm, HTCondor)
●​ Unit testing with Snakemake

○​ Generates tests for pytest, tests per rule can then be run in pytest
○​ Generated tests potentially extendable to use in ci-testing

●​ Snakemake built on individual solutions -> motivation for new structure and Workflow
catalog

CWL overview
https://carpentries-incubator.github.io/cwl-novice-tutorial/ Teaching workflow thinking to
novices

Presenter(s): Michael R. Crusoe Slides

●​ Workflows are “type of structured computing”
○​ Focus on scaling, automation, provenance
○​ Complement unstructured approaches (e.g., bridge between tools)
○​ Focus is on standards

●​ CWL covers many tools in many languages
●​ Many workflow languages exist (at least 348) -> need a standard for workflow

languages
○​ Agnostic on container format, simply state what is used
○​ Designed to improve workflow FAIRness

●​ CWL is two standards in one
○​ CWL Command Line Tools (CLTs) description

■​ How to run tool, allowed/required inputs, outputs and how to get them
○​ CWL Workflow description

■​ Connect CLTs and sub-workflows into workflow graph
●​ New since 2017

○​ CWL paper in 2022:
https://cacm.acm.org/magazines/2022/6/261172-methods-included/fulltext

○​ Joined SDO (part of Software Freedom Conservancy)
○​ Included in IEEE standards (referenced by FDA in US)
○​ Functionality:

■​ Workflow level conditionals
■​ ToolTimeLimit for wall time-based schedulers

https://carpentries-incubator.github.io/cwl-novice-tutorial/
https://docs.google.com/presentation/d/1c8qvNOvsaeZ0LD7BNq3_5iMF9bQlHean9AO-08qHmig/edit?usp=drive_link
https://s.apache.org/existing-workflow-systems
https://cacm.acm.org/magazines/2022/6/261172-methods-included/fulltext

■​ WorkReuse for steps that shouldn’t be cached
■​ InplaceUpdateRequirement adds hint that destructive data edits

allowed
●​ Technical details:

○​ Can specify file formats
○​ No requirement of shared file system (quite important for HEP, where we have

baked in assumption of having a shared filesystem with CVMFS)
○​ Modular, reusable design, designed for HPC computing
○​ Validator to catch syntax errors prior to running

●​ Data Model uses CLT as a basic unit
●​ Portability / environment extension

○​ Are just generic environment files supported? Or are lock file standards (e.g.
conda-lock, pixi.lock) supported?

●​ Questions:
○​ Is CWL top down or bottom up?

■​ CWL isn’t target based like Snakemake
○​ Charles: Interested in portable workflows. Then want to be able to run it

locally, on cloud, on HPC, etc, but without having to do a lot of management
and editing. Is this possible?

■​ Yes. Snakemake helps you configure things in general, but CWL might
need you to configure your runner (but this is ideally provided by the
ops people at your resource location). (c.f. “CWL Enables Execution
Portability” slide)

■​ There’s no CWL infrastructure, there’s just the standard. Though c.f.
the “CWL in the HPC ecosystem” talk after lunch on this.

○​ Lukas: Can we have people write in Snakemake for usability, but then export
to CWL for long term preservation (Here we’re thinking explicitly of RECAST
workflows)

■​ Somewhat complicated to be able to export all functionality to CWL.
You’d need to more port over custom Python code to CWL, which
requires more work.

■​ Michael: Totally worth doing

CWL in the HPC ecosystem
Presenter(s): Iacopo Colonnelli

●​ CWL comes with functionality for reproducibility, reusability, etc., but what about for
HPC orientation?

○​ Build HPC support inside (CWL4HPC WG) and around CWL (StreamFlow
Workflow Management System (WMS)

●​ CWL4HPC WG (https://www.commonwl.org/working-groups/cwl4hpc) aims to identify
workflow patterns for modelling large-scale scientific applications and implement
through CWL enhancement proposals

○​ Propose pattern, motivate with 2 real use cases and agree on first draft of
syntax/semantics.

○​ Implement as a CWL extension on cwltool (the reference implementation) and
another CWL-compliant WMS (with conformance test).

https://www.commonwl.org/working-groups/cwl4hpc

○​ Validate on at least two existing CWL workflows (where proposal is applied or
new workflows for demonstration).

●​ Workflow patterns:
○​ Parallel: scatter method to decompose jobs across input parameter
○​ Iterative: loop extension iterated for iterative workflow support
○​ Concurrent: requires streaming (Stream type not not yet supported in CWL),

CWL structure regular enough to allow automatic conversions of arrays to
streams (gather+scatter/loop+scatter) but not all safely optimisable.

■​ Channel CWL extension proposed but needs WMS support.
■​ External steering can be modelled as concurrent iteration pattern,

CWL operation class can model workflow steps as custom processes.
○​ Coupling (e.g., grouping in Snakemake): not supported in CWL; needs

communication channels between ports of workflow steps and
application-agnostic protocols.

●​ Large-Scale Workflows
○​ Steps can require multiple intercommunicating agents (e.g. Spark or Dask

cluster)
●​ Hybrid workflow has steps which can span multiple, heterogeneous, independent

infrastructures
○​ Step becomes fireable when input dependencies ready and transferred, and

related location deployed
●​ StreamFlow WMS (https://streamflow.di.unito.it/)

○​ Workflow description (e.g., CWL) and model description (e.g., Kubernetes,
Docker) are separated, linked by StreamFlow file

○​ Faster with hybrid workflow in federated learning example
■​ How much expertise did this require? HPC workflows require

expertise in general, but how much CWL expertise was required to do
this multi-federated workflow?

Questions
●​ Lukas: how is data movement handled?

○​ Iacopo: data movement depends on what you want to target: if the space is
common then it is not moved; if not then it retrieves and copies

●​ Charles: for hybrid clustering, where does the scheduler run
○​ Iacopo: within the VM, is run from

Airflow and Nextflow applications for neuroscience
Presenter(s): Erik Johnson

●​ Neuroscience computational operations are starting to reach maturity which now
require / benefit greatly from automated workflows

●​ Public data archives are increasing scale
●​ Data in the neuroscience domain (structural neural imaging data)

○​ 2 petabytes of scale for high voxel resolution
●​ Intern SDK standardises access to bossDB, DVID, CloudVolume data stores.
●​ Workflows typically include classification/detection in subvolumes, merging of

identified objects and analysis of 3D objects (e.g., graph extraction, density
estimates).

●​ Key workflow management features and limitations:

https://streamflow.di.unito.it/

○​ What functionality needs to be exposed to who?
○​ What monitoring is required? (use case dependent, i.e., laptop vs cluster)
○​ Scalability of execution.
○​ Managing heterogeneous resources is a challenge.

●​ SABER workflow for neuroimaging
○​ Now legacy software, but is still open source
○​ Built on Galaxy; workflows specified in CWL, CWL parser written to translate

to Airflow
●​ Integrate workflow and data management -> DataJoint+Nextflow

○​ Aim to provide low-effort, easy setup integration
○​ Setup script builds required docker images
○​ Containerised processing steps defined, workflow built from these processes

●​ Future directions include:
○​ Exploring intersection of workflow management and data management
○​ Integration with range of archives
○​ Streamline workflow and data structure creation process

■​ “If you provide a barrier to entry that tends to limit adoption” <- we’ll
come back to this on Day 3

Questions
●​ Clemens:

○​ Erik: done a lot of work on environments to explore the final data
●​ Lukas: what is the view of WL developers on integration of data management in WLs

and measures to avoid reproducing? Workflow has very expensive data reduction
steps

○​ Johannes: independent of storage system, checksums used in past (but can
be expensive across many jobs), also examined code for changes

○​ : monitoring and visualisation very important for this and spotting where things
are

○​ Michael: some systems will give cost estimations. Should consider whether
breaking apart workflows is a problem (e.g., provenance)

●​ Matthew: would like to circle back to discussion of provenance later.

Airflow overview
Presenter(s): Santona Tuli

●​ Upsolver
○​ Well described by term “Computational database” -> Data-dependent

pipelines
○​ Based on Iceberg/Amazon S3
○​ Transformations written declaratively, then automatically optimised and

orchestrated
●​ Apache Airflow

○​ Open source top-level Apache project for monitoring and data pipelines.
○​ Orchestrates many technologies, providing overarching infrastructure
○​ Python native -> fully programmatic workflow authoring
○​ Extensible -> many open source integrations, custom operators are easy
○​ Monitoring and alerting -> built in logging

○​ Modular workflow architecture (doesn’t care about data (data agnostic), just
on the work that needs to be done)

○​ Communication of data AND metadata (e.g., what version of a model is in
production), dynamic generation of tasks, persisted history of runs

●​ Core components of airflow infrastructure
○​ Web server: flask server running with Gunicorn for UI
○​ Scheduler: daemon for scheduling jobs
○​ Database: database for metadata storage
○​ Executor: defines how tasks are executed
○​ Worker: processes task execution
○​ Triggerer: asyncio process to support scheduler

●​ Core concepts in airflow:
○​ Task is a unit of work
○​ Relation of tasks is a dependency
○​ Tasks and dependencies together is a DAG
○​ DAG instances can be run as scheduled runs
○​ DAG can be triggered manually, on a schedule or by a “dataset” (i.e., waits for

new data)
○​ Operators are wrappers around tasks to define the task purpose, e.g.,

PythonOperator to execute python callables.
○​ Connections are used by operators to talk to third party apps

●​ Model building example -> triaging of issues in Airflow github
○​ Training DAG runs once a day: takes issues, extracts features and then trains

model
■​ Can run tasks independently when changes/fixes made

○​ Deployment DAG checks for trained model every 15 minutes, validates new
model, chooses and executes deployment strategy (new model if better,
previous if not)

○​ Prediction DAG runs every 2 minutes to serve predictions on new issues
Questions

●​ Clemens: environment by operator is unique. How are workflows developed
interactively?

○​ Santona: multiple workflow workspaces for dev, prod, etc., use dev on
subsample to test. Can also develop in, e.g., annotated Jupyter notebooks
and then write into DAG

○​ Clemens: dev and production environments one and the same in HEP
○​ Santona: possible to establish environments through e.g., Kubernetes
○​ Lukas: what is the development story for workflows? Are there interfaces to

run/put together operators (as it seems very low-level) and who puts them
together?

○​ Santona: not unlikely that airflow engineers at a company responsible for
writing operators; standard open source airflow fine for some use cases.
Physicist would need to run and debug DAG; writing operators is a different
level of development, e.g., how CMS software is separate from physics.
Whilst we want analysis process to be robust, Airflow (or similar) isn’t
necessarily the solution. Containerisation and code versioning better for this.

●​ Matthew: does Airflow take care of S3 bucket caching in the DAG?

○​ Santona: DAG only runs from where it needs to run from, e.g., on fail can run
from that task, otherwise exception needed to be included to pull from S3
bucket.

●​ Similar to the Airflow and Nextflow talk from Erik, are the people who are building
these workflows and maintaining them data engineers? Or are the data science / ML
engineers also in the loop on these? We want to better understand what the workflow
language experience is like for a relatively new Ph.D. students working on their Ph.D.
analysis.

●​ On slide 14 there is the example model. You mentioned that as there are
versioned/timestamped outputs in an s3 bucket if the “train_model” step fails then
you can pull those previous step outputs to avoid rerunning and then use them for
the fixed “train_model” step. Is this something that you have to do manually, or is this
something that Airflow provides as a feature?

Discussion and demos
Presenter(s):

Lukas: this is what a “typical” (?) step looks like for an ATLAS analysis (why???)

●​
Matthew: provenance (discussion from after Erik’s talk)

Day 2, Thursday 4th April

Session overview
Presenter(s): Clemens Lange, Jamie Gooding

●​ Dinner at Luigia, table for 19:00, walking over from Building 39 at 18:35
Questions

RECAST workflows in ATLAS SUSY
Presenter(s): Ben Hodkinson

●​ RECAST workflows developed and used in reinterpretation efforts
○​ Plugging in a SUSY signal model is “the easy bit” -> don’t want to lose the

hard work!
●​ Re-use cases:

○​ New signal points for statistical combinations
○​ Apply SUSY searches to non-SUSY models and vice versa
○​ Check new models not already excluded
○​ Interpret in wider SUSY parameter spaces

●​ Analysis code is typically very specific to analysis; analysis team often disbanded
after analysis complete

●​ RECAST preserves ATLAS software env, commands and workflow
○​ Needs to include all the steps and how they chain together
○​ REANA used heavily for performing reinterpretations
○​ Only reprocesses the signal simulation, not other components

●​ Authoring a RECAST analysis workflow user experience
○​ For an ATLAS analysis have a variety of inputs (e.g. dataset ID, simulation

sample names, EOS file paths, XRootD paths to simulation). Outputs are
generally the final statistical analysis results (CLs value)

○​ When writing the workflow rely on Docker images that contain the full
software environment and the source code

○​ The workflow is then split between the RECAST steps file that defines the
actual operations and the workflow file that drives things

○​ People doing this work have some issues:
■​ Analysis team is quite large, and so a single person doing the

RECASTing might not know how all steps of the analysis work
■​ Requires understanding multiple technical things
■​ Culturally, the implementation of RECAST is more of an afterthought

than something that is done concurrently
●​ Using RECAST for reinterpretation

○​ Can design an analysis for reinterpretation for looking for new physics, that is
different from what was originally looked for in the published analysis, that
exists in a similar kinematic selection region as the original signal models.
These won’t be maximally sensitive, but provides information quickly.

○​ REANA monitoring webpage quite useful
■​ CPU usage for the ATLAS pMSSM scan the is about 5 hours per job

○​ Statistical combinations

■​ Generate new signal points and then use RECAST
●​ Challenges using RECAST

○​ Harmonisation of inputs
■​ Each analysis works slightly differently as there is no enforced

standard / schema of how things are implemented. More of a cultural
issue in SUSY, but still something that could be made easier

○​ Hidden dependencies in the code on the original signal samples (hard coded
names)

○​ Open science pyramid:
■​ Make it possible [X]
■​ Make it easy [in principle, but still hard at at lot of corners]
■​ Make it normative [About 50 SUSY analyses that are actively useful in

RECAST]
■​ Make it rewarding [This is unknown still, how to make this happen]
■​ Make it required [This was deeply unpopular, and probably won’t

happen again in the future]
Questions

●​ Jamie: does signal here refer to the signal contribution to the simulation histogram?
●​ Michael: The workflows are written in Yadage, or .. ?

○​ [Matthew]: Yes, RECAST currently only supports Yadage.
●​ Jamie: (Slide 10) is the gitlab-registry.cern.ch the same registry discussed yesterday

(ATLAS+open science)?
○​ [Matthew] No, these are using the built in CERN GitLab container registry that

exists automatically for each GitLab repository. The CERN Harbor container
registry is separate

●​ Jamie: training for starting PhD students to avoid learning “cliff” when learning
required technologies (Docker, CI, YAML, Kubernetes, RECAST, REANA)?

●​ Jamie: (slide 26) paper descoped but would the analysis have happened without
RECAST?

●​ Charles:
○​ I completely disagree that making RECAST a requirement for

graduation/publication is impossible. Points out that many computational
science journals require the code to be available.

○​ Why do people need to generate specific Docker images?
■​ The Docker images are analysis specific and also contain the original

analysis source code and then it's built artefact
○​ Can steps be shared and cached?

●​ Valeriia: In the situations where the workflow breaks due to a RECAST issue, what
happens? What are the symptoms? Does it just not work? Does it work but give an
invalid answer?

○​ Sometimes it just fails and then gives an error message (sometimes very
confusing ones).

○​ Sometimes the workflow executes, but maybe a final step fails silently (exit
codes are important!) or maybe merges fail.

Snakemake workflows in LHCb
Presenter(s): Mindaugas Sarpis, Valeriia Lukashenko

https://github.com/recast-hep/recast-atlas/tree/ebc66fd54778e13409a0966004e6d4266f79f8d0
https://registry.cern.ch/harbor/
https://registry.cern.ch/harbor/

Part 1: Valeriia
●​ Time for experiment development and analysis (2+2) is greater than the average

PhD lifetime (~3.5 years)
●​ Having a structured workflow (Snakemake) enabled better handoffs, especially useful

given the turnover during the period
●​ Snakemake features/benefits used by all: Readability, Scalability, and Configurability
●​ Only Valeriia: Modularization and Transparency
●​ Portability was not tested/used.
●​ Possible dangers: People view Snakemake as a magic button and trust blindly

○​ This cost 1 year of time!
●​ How to increase users

○​ Training and promotion (LHCb starterkit)
■​ Super important/critical to have people write the Snakefile while

starting to write the analysis
■​ Talk with Valeriia for advice as she is an HSF training working group

coordinator
○​ Enforce!

●​ LHCb snakemake template
○​ Analysis Workflow Template (able to be cloned and reused)

●​ Can use workflows as part of upgrades for doing validation?

Part 2: Mindaugas

●​
Questions

●​ Jamie: has Snakemake guided analyses from a collection of scripts to something
more like a software project?

●​ Xrootd not working in Snakemake 8 because of change of file systems are included
○​

Luigi/Law workflows in CMS
Presenter(s): Marcel Rieger

●​ Reproducibility and portability are important for analyses
●​ On the complexity vs. scale problem, Luigi handles complexity and Law handles the

scale
○​ The scale can be quite large. Well into the millions of task operations.

●​ Luigi workflow language: Operates on task system
○​ Able to build CLI API quickly from user defined Luigi classes
○​ Execution model is make-like

●​ HEP concepts, constraints, and peculiarities
○​ Systems designed for analysis preservation might not be the best system for

a day-to-day workflow development environment
○​ Might need to change the design of an analysis design well into the analysis

itself, and so need the flexibility of tooling to adopt new changes
○​ Remote storage is mandatory. Local storage (e.g. lab / university) is not

always sufficient.
○​ Analyses are large: Order 10^6 tasks in the task graph
○​ Very heterogeneous compute and analysis facility infrastructure

●​ Law:
○​ Extension on top of Luigi
○​ Toolbox to follow an analysis design pattern
○​

Questions
●​ [Matthew] When you talk about remote storage, does this mean streaming?
●​ [Matthew] Mentioned on slide 22 that if you wanted to separate analysis code and

workflow code, but how hard is that to do in reality? Could you use Law and have the
workflow logic/control be separate?

○​ Opposite: Would instead recommend keeping things separate by default
●​ [Jamie] When you mention the job submission, there seems to be no additional

boilerplate but it is just built in at runtime. Do you have feedback from early users on
interfacing with HPC resources where people wouldn’t use them without this, given
they would have to learn how to write these configs?

○​ People seem to like to be able to work between HTCondor and Slurm easily
●​ [Johannes] What is confusing is that you need to be able to inherit the

law.HTCondorWokrflow superclass to be able to use things, so if you wanted to use
Slurm then you would need to edit the class as well.

●​ [Lukas] Seems that it is true that for an analysis preservation context that Law isn’t
designed here as one analysis could be optimised for running on a particular
institute, but that won’t necessarily work if you’re trying to preserve analyses and
rerun them elsewhere

○​

HEP-CCE
Presenter(s): Charles Leggett

●​ HEP-CCE explores the intersectionality of HEP software and HPC environments
○​ How to exploit parallelism
○​ How to run across multiple GPU architecture
○​ How can we get the theory stack of simulators (e.g. MadGraph5) to run on

HPC/GPU systems
●​ Focus on portability

○​ What does it take to have a HPC workflow designed on one HPC facility and
make it run on another?

●​ HEP workflows don’t map well to traditional HPC
○​ Highly non-uniform workflows (the reconstruction toolchain steps have vastly

different runtimes. Some steps take seconds, other hours)
○​ Need for real-time and on-demand compute resources

●​ Resources access challenge
○​ When Rubin observatory observes a supernova it needs to be able to have

access to compute on demand in short order
●​ Software environment challenges

○​ Requests for CVMFS and EOS are non-trivial and some sites just don’t
support them

●​ How do you deal with interrupted data?

○​ If data streaming is happening for a supernova event and then something
goes wrong, how are you able to pivot and send the stream elsewhere
without loss?

●​ Phase 2 HEP-CCE Plan
○​ Provide experiments with validated, portable solutions
○​ Deployment of portability overlay

■​ Might look like using funcX
●​ Big questions

○​ Why did all the experiments create their own tools?
○​ Can we find common tools?
○​ Is is possible to have real time monitoring

Questions
●​ Slide 15: As you mentioned solutions like funcX, are you looking at supporting a large

surface area of technologies and languages? Such as using Parsl executors for just
funcX and then different solutions elsewhere?

●​ Are there particular examples of CWL and Snakemake being used on HPCs? If so,
can you point us to them?

○​ CWL: iacopo.colonnelli@unito.it
●​ Grafana?
●​ [Luke] Analysis can be an iterative process, and will want to be able to know if there

have been changes which affect the analysis and also the performance.
●​ [Lukas] In some Swiss computing centres there is a push to work on Kubernetes on

HPC, as k8 is cloud native then it already provides a portable substrate. Is this
something that is considered for the US HPC facilities?

○​ US has quite a bit of inertia. Though the HEP-CCE IRI might push people
towards adopting common APIs.

●​ [Clemens] On slide 17 we have issues with data provenance now for HEP where we
run and then we generate ntuples which are distributed, but we don’t keep
provenance on this. It would be nice if we could have workflow tools that could help
to add provenance information on how data were produced.

FAST-HEP: Confronting the challenges of developing a
workflow language for HEP analysis
Presenter(s): Luke Kreczko

●​ What do we actually need?
○​ Data input

■​ Local files (ROOT, CSV, npy, HDF5, JSON)
■​ Remote files with/without auth (xrootd, https, S3)
■​ Diverse (e.g., more than one tree
■​ Meadata (nEvents, dataset type, production year, provenance and

workflow versioning)
○​ Assumption: convenient to create configs -> easy to modify and diff
○​ Regions of interest and systematic: in short, ability to clone subgraph for

variations
○​ Execution: delegated workflow to other software (coffea, dask, HTCondor,

prefect, etc.)

mailto:iacopo.colonnelli@unito.it

●​ Sharing presents significant challenge:
○​ Workflow sharing
○​ Data sharing
○​ Responsibility sharing

Questions/responses
●​ Michael: Sometimes we spend a lot of effort working around sharp (technology,

social) corners; but really we should just fix them so we stop hurting ourselves.

Discussion and demos
Presenter(s):

●​

Day 3, Friday 5th April

Session overview
Presenter(s): Clemens Lange, Jamie Gooding

REANA Overview and Demo
Presenter(s): Tibor Šimko

●​ The long term value of the data collected at colliders is huge. These experiments
have very specific run conditions that are unique to that run in time.

●​ While best practices for reproducibility are known, it is hard to make it used in
practice when it comes to actual science

○​ Most of this is sociological
●​ Analysis Preservation

○​ Data preservation:
■​ CERN Open Data Portal
■​ CERN Analyais Preservation
■​ HEPData
■​ Zenodo (with GitHub integration)

○​ Computing environments
■​ Linux containerization

○​ Computational Recipes
■​ Build DAGS that can be thousands of steps
■​ REANA supports multiple computational workflow engines
■​ How to make it actionable?

●​ Need good testing and integration
●​ Jupyter notebooks are popular but there is low reproducibility

of them
●​ REANA architecture

○​ Support multiple workflow engines and containers on Kubernetes
○​ Installable via HELM charts
○​ Have tested on Google Cloud and super computers

●​ REANA job controller allows for a hybrid workflow
●​ Reproducibility vs. preproducibility

○​ https://doi.org/10.1038/d41586-018-05256-0
●​ REANA could be hooked up to GitLab to even run things in a CI/CD system-like

workflow
●​ Looking at adding Dask support (Slide 32)
●​ Discussion topics:

○​ Gherkin behaviourlal tests
Questions

●​ For ATLAS pMSSM basically developed against REANA, as knew this is where the
execution would be. This could be slow as needed to rebuild container images, but is
there a way to speed up things?

○​ A few ways to do this:
■​ Can develop locally

https://doi.org/10.1038/d41586-018-05256-0
https://zenodo.org/records/10263204

■​ Can try to install REANA locally, but
■​ Can export the workspace on EOS, and then using kerberos tokens to

copy things over to REANA
●​ In the scenario where there are multiple people working against a single workflow

execution, so someone on a team can change a single bit of the code but then
maybe that person isn’t the first who executed the workflow. So can you have
co-authors on a team?

○​ Currently no, but a team could user a shared service account.
■​ Let’s try this

●​ Are there experiments outside of the LHC using REANA?
○​ The PHENIX experiment at BNL is

●​ Slide 32: What would trigger the allocation of a Dask cluster and how do you provide
information on the resources? From the point of view of the workflow, nothing special
happens as the Dask cluster exists already as Dask has already been provisioned.

REANA for IRIS-HEP AGC
Presenter(s): Andrii Povsten

●​
Questions

Discussion: Workflow adoption roadmaps
Presenter(s): Clemens Lange, Jamie Gooding, Lukas Alexander Heinrich, Matthew Feickert

●​
Questions

Discussion: Workflow adoption challenges
Presenter(s): Clemens Lange, Jamie Gooding, Lukas Alexander Heinrich, Matthew Feickert

●​

Document writing

●​ Original ideas related to the workshop creation was that while we’ve had some
success stories in HEP, we don’t have workflow languages used in our daily
experience of doing physics.

●​ What should we write to summarise the workshop / provide a document to
encapsulate knowledge? Options:

○​ Put a paper on arXiv that summarises what we as a community learned from
the workshop and what we think are hurdles that need to be overcome

○​ Do's and don't's-style paper (e.g., ten simple rules
https://collections.plos.org/collection/ten-simple-rules/)

○​ Delay paper and have a follow up workshop that is more user focused
●​ Thoughts:

○​ Personal view is that the value of the workshop

○​ Don’t have to just pick one of the options
○​ The sociological challenges are real and so important to have these things

very clearly written. Shouldn’t shy away from the difficulties that people have
faced in trying to get these

■​ Open is not enough paper
○​ If involve the conveners then can enforce standards and policies

■​ Though ATLAS had the soft requirement for a few years before this
was demoted from a “soft requirement” to a “suggestion”. Have a
strong focus on user experience.

○​ Should reach out to experiments outside of CERN. Involving DUNE would be
quite important.

○​ Can contribute to the HSF analysis preservation with information from this
workshop

■​ Currently we have an HSF REANA training lesson using Yadage; and
plan to make a Snakemake version:
https://hsf-training.github.io/hsf-training-reana-webpage/

■​ HSF snakemake tutorial isn’t very standalone at the moment, so can
try to make this more modular into the future. We can propose new
tools.

○​ Training is good, but we also need to make sure that the user experience
even after training is good.

○​ Seems that a new workshop that is more user focused is important, so we
should do that

■​ In terms of what is written, perhaps a short whitepaper that
summarises the difficulties and the variety of what were discussed.

■​ The 10 simple rules has the advantage of being a clear document of
what people should do.

■​ Charles: Each experiment should put together a few non-trivial
examples of what is needed to actually

●​ Kinda already have this, but they aren’t public and so need to
have them be in collections

■​ If you have whitepapers that show that there are areas of work then
​
“Ten simple rules for making a software tool workflow-ready”
https://doi.org/10.1371/journal.pcbi.1009823

Things that we [physics analysts] need from
workflow tools

●​ to be able to set container cache dirs globally (snakemake won’t let you control this
even with envvars, e.g. how can we set environment variables such as
APPTAINER_CACHEDIR?)

○​ Johannes: Set this on the system, though Snakemake should be respecting
this.

○​ Matthew will open an GitHub Issue.

https://www.nature.com/articles/s41567-018-0342-2
https://hsf-training.github.io/hsf-training-reana-webpage/
https://doi.org/10.1371/journal.pcbi.1009823

●​ Podman support to be able to have local docker experience
○​ cwltool and `toil-cwl-runner` have this supported today with --podman
○​ Snakemake support coming with plugin system

https://github.com/snakemake/snakemake/issues/2414
○​ Alternative: install REANA locally (using Docker or Podman works fine) and

run CWL, Snakemake, Yadage workflows via REANA rather than via using
vanilla cwltool/snakemake commands. (This will use Docker or Podman even
if the workflow engine does not directly support the technology yet. Ditto for
Krb5, VOMS, Rucio and other such technologies that are plugged into
REANA and may not be fully plugged yet into upstream workflow engines.)

●​ Workflow tools need “to get out of the way”, i.e. not be installed into development
environment since they might not be compatible (mainly Python versions and
packages)

●​ Storage plugins to work with EOS, XRootD, CVMFS(?)…
○​ Auth?
○​ Incorporate file system knowledge into plugins, e.g. don’t check individual file

existence if parent directory does not exist (done in some snakemake plugins)
●​ site-dependent configurations (e.g. XRootD vs. webDAV, HTCondor vs. Slurm)
●​ For tool dependency resolution, cwltool has a configuration option available to map

software names/identifiers to site-specific providers:
https://cwltool.readthedocs.io/en/latest/#leveraging-softwarerequirements-beta

●​ Resubmission logic/option
●​ Control filesystem mounts in containers at a per-task level (-v /cvmfs:/cvmfs …)
●​ Enable authentication inside a container (-v …:/tmp/kerberos…)
●​ Useful to have example workflows for HEP as a example for wflow languages?

○​ “AGC-for-workflows”:
○​ https://github.com/reanahub/reana-demo-bsm-search was one attempt
○​ The AGC with workflows: https://github.com/columnflow/agc_cms_ttbar
○​ Make sure it is discoverable by snakemake and makes it into the

“standardised usage” category
●​ How to work with workflows that include scale out systems (Dask, Spark, Hadoop,

… service jobs?)
●​ Control / Submit / Monitor workflows from within Jupyter ?

What do we need to do to adapt to workflow
languages/structured computing?

●​ “Workflow thinking” (M. Crusoe), small tools, clean APIs, ..
○​ http://cacm.acm.org/magazines/2022/6/261172/fulltext?doi=10.1145%2F3486

897
●​ “Ten simple rules for making a software tool workflow-ready”

○​ https://doi.org/10.1371/journal.pcbi.1009823
●​ More shared tools, better standardized data access

https://cwltool.readthedocs.io/en/latest/cli.html#cmdoption-cwltool-podman
https://github.com/snakemake/snakemake/issues/2414
https://cwltool.readthedocs.io/en/latest/#leveraging-softwarerequirements-beta
https://github.com/reanahub/reana-demo-bsm-search
https://github.com/columnflow/agc_cms_ttbar
https://snakemake.github.io/snakemake-workflow-catalog/
http://cacm.acm.org/magazines/2022/6/261172/fulltext?doi=10.1145%2F3486897
http://cacm.acm.org/magazines/2022/6/261172/fulltext?doi=10.1145%2F3486897
https://doi.org/10.1371/journal.pcbi.1009823

Scratch Area

https://github.com/common-workflow-language/cwltool/blob/main/cwltool/singularity.py#L166

 johannes.koester@uni-due.de

Johannes comments:

●​ thought for REANA client:
○​ One could offer the ability to mount a workspace to the local system via FUSE

(e.g. sshfs), so that people can browse and access it like a local volume

mailto:johannes.koester@uni-due.de
https://github.com/common-workflow-language/cwltool/blob/main/cwltool/singularity.py#L166

	Workshop on workflow languages for HEP analysis (3-5 April 2024)
	Day 1, Wednesday 3rd April
	Workshop introduction
	Snakemake overview
	CWL overview
	CWL in the HPC ecosystem
	Airflow and Nextflow applications for neuroscience
	Airflow overview
	Discussion and demos

	
	Day 2, Thursday 4th April
	Session overview
	RECAST workflows in ATLAS SUSY
	Snakemake workflows in LHCb
	Luigi/Law workflows in CMS
	HEP-CCE
	FAST-HEP: Confronting the challenges of developing a workflow language for HEP analysis
	Discussion and demos

	
	Day 3, Friday 5th April
	Session overview
	REANA Overview and Demo
	REANA for IRIS-HEP AGC
	Discussion: Workflow adoption roadmaps
	Discussion: Workflow adoption challenges
	Document writing

	Things that we [physics analysts] need from workflow tools
	What do we need to do to adapt to workflow languages/structured computing?
	Scratch Area

