
CS61 Section Notes - Process Management and 

Sockets 

We’ll be using the section repo today. If you don’t have it handy run 
“git clone git@code.seas.harvard.edu:cs61/cs61-section.git” or otherwise just git pull to get the 
newest code (it’ll be in the s11/ directory). Type “make” and then to run some file foo.c 
referenced in the notes, just do “./foo”. 
 

0. kill() 

 

int kill(pid_t pid, int sig) 
The system call kill() takes two arguments, the process ID you want to send a signal to, and the 
second is the signal you want to send.  If successful, kill() returns 0, otherwise the return value 
is negative. 

1. Building on process management 

 

Let's look at how we can use process management system calls to build other interesting 
system functions. 
 
First, we'll investigate mutual exclusion locks. In the last unit of the class, we'll learn how to 
write multithreaded programs. A multithreaded program allows a single process to contain two 
or more logical processors, which we call threads or “threads of control”. Threads aren't 
isolated: all threads in a process share the same memory space. However, each thread has a 
separate stack. Threads are cool because (for example) on a multicore machine, many 
processors can work simultaneously on the same data. 
 
A mutual exclusion lock has two operations, acquire and release. Acquire and release are 
paired, kind of like open and close. Acquire() succeeds immediately, unless another thread has 
called acquire() but not release(). That is, at most one thread can have the lock acquired at a 
time. If another thread calls acquire(), it will block until the lock is release()d. 
 
How can we implement mutual exclusion locks? You might think this would work: 
 
typedef struct { 
   int islocked; 
} mutexlock; 
 
void mutexlock_init(mutexlock* m) { 
   m->islocked = 0; 
} 



 
 
void acquire(mutexlock* m) { 
    while (m->islocked) 
        /* do nothing */; 
    m->islocked = 1; 
} 
 
void release(mutexlock* m) { 
   m->islocked = 0; 
} 
 
But that doesn’t work—at all! In acquire(), the check of m->islocked and the assignment 
m->islocked = 1 do not happen atomically. If two threads were waiting for the lock, they might 
simultaneously see that m->islocked == 0, and then simultaneously set m->islocked = 1. Then 
two threads would think they had acquired the lock, which is illegal. 
 
There are good ways to solve this problem; we'll see them soon. But we already know one way: 
the kernel implements most system calls atomically! In particular, it implements fork(), waitpid(), 
read(), write(), and kill() atomically. 
 
Can you implement a mutual exclusion lock based on helper processes? You may assume 
that no external code will call waitpid() on your helper process(es), and that process IDs are not 
reused. 
 
Start with this: 
​ ​ ​ ​ ​  
typedef struct {​
    volatile pid_t p; 
   // maybe more stuff here​
} mutexlock; 
 
void mutexlock_init(mutexlock* m) { 
   // your code here 
} 
 
void acquire(mutexlock* m) { 
   // your code here 
} 
 
void release(mutexlock* m) { 
   // your code here 
} 



 
Any mutual exclusion lock requires some operation that waits. For processes, we know that waitpid can 
block when waiting for a child to exit. But also read() waits for data to become available. 
 
Mutual exclusion also requires that at most one thread can have a lock in the acquired state at any 
instant. We therefore need a system call that gives at-most-once behavior. read from a pipe gives 
at-most-once behavior because it reads characters in first-in, first-out order without duplicates or 
omissions: if one character is in a pipe, and two processes or threads call read at the same time, only 
one of them will read the character. 
 
These insights lead to the following lock. The lock is in the unlocked state iff there is a character waiting in 
the `acquirepipe`. The first thread to read that character will get the lock. To release the lock, the thread 
writes a character to the `releasepipe`, which tells the helper process to go back to the unlocked state. 
 
Here's a version of the solution that uses pipes. 
 
typedef struct {​
    int acquirepipe[2]; 
   int releasepipe[2];​
} mutexlock; 
 
void mutexlock_init(mutexlock* m) { 
   pipe(m->acquirepipe); 
   pipe(m->releasepipe); 
   if (fork() == 0) { 
       close(m->acquirepipe[0]); close(m->releasepipe[1]); // just for general cleanliness 
       char ch = '!'; 
       while (1) { 
           write(m->acquirepipe[1], &ch, 1);   // for full correctness, would need a loop 
           ssize_t r = read(m->releasepipe[0], &ch, 1); 
           if (r == 0) // parent died 
               exit(0); 
       } 
   } 
   close(m->acquirepipe[1]);   // just for general cleanliness 
   close(m->releasepipe[0]); 
} 
 
void acquire(mutexlock* m) { 
   char ch; 
   read(m->acquirepipe[0], &ch, 1); 
} 
 
void release(mutexlock* m) { 



   char ch = '!'; 
   write(m->releasepipe[1], &ch, 1); 
} 
 
But there's a simpler choice. waitpid also gives at-most-once behavior, because when a process dies, its 
status is collected at most once (the zombie is destroyed once the status is collected, so future waitpid 
attempts on that process ID will fail). 
 
These insights lead to the following lock. The locked state is represented by a living helper process, the 
unlocked state by a zombie helper process. To release the lock we kill the helper process. To acquire the 
lock, we use waitpid to try to collect the helper process’s state. If the helper is a zombie (the lock is 
unlocked), waitpid will succeed; we create a new helper process to represent the locked state. If multiple 
threads try to acquire a lock at once, only one of them will succeed (waitpid will return m->p); the rest of 
them will return an error since the zombie has been destroyed. The error indicates that some other thread 
grabbed the lock and we should retry. Finally, to initialize the lock, we create a thread that immediately 
exits, since the lock should start out in the unlocked state. 
 
 
typedef struct {​
    volatile pid_t p;​
} mutexlock; 
 
void mutexlock_init(mutexlock* m) { 
   m->p = fork(); 
   if (m->p == 0) 
       exit(0); 
} 
 
void acquire(mutexlock* m) { 
   int s;​
    while (waitpid(m->p, &s, 0) == -1) 
       /* */;​
    m->p = fork();​
    if (m->p == 0) { 
       while (1) 
           sleep(1000000); 
   }​
} 
 
void release(mutexlock* m) { 
   kill(m->p, SIGKILL); 
} 
 



2. IPC across machines: RPC! 

 

Now that you are all pipe experts, IPC is a breeze and life is good. But what do you do if your 
processes are on separate machines? Sockets to the rescue. How are sockets different from 
pipes? 
 
The primary difference is where they can be used. Pipes are only usable when both processes 
are on the same logical machine; while sockets can be used across machines or within a single 
machine. They also support the additional protocols needed to connect across separate 
physical machines. This is almost always transmission control protocol (TCP) or user datagram 
protocol (UDP) over internet protocol (IP). Also, sockets offer bidirectional communication. 
Because they can connect across machines the two ends behave differently from pipes. One 
side is a listener (frequently called the “server”) and the other side connects to the first 
(frequently called the “client”). 
 
Let’s start by making sockets in the shell.  First, let’s take a look at a super useful tool netcat 
(note that netcat comes in a few flavors. on some systems it’s nc on others it’s ncat the versions 
are slightly different but just as powerful as far as I can tell). 
 
Netcat is self described as the “TCP/IP swiss army knife”. It will allow you to make arbitrary 
socket connections from the shell. For example we can make an instant chat system. Server: 
 
Demo 
1) run ifconfig to expose your ip address 
2) run netcat in listen mode on port 6667: 

nc -l -p 6667 
3) have someone in class run netcat to connect to you (first one who gets there gets to 
connect): 

nc <ip from step 1> 6667 
4) have them say hello… 
But it gets better: you can send binary data across the connection too: 
5) restart the netcat connection this time redirect to a file: 

nc -l -p 6667 > their_ls 
6)  have someone in class send you their ls program (note, some versions of nc don’t seem to 
respect the EOF character. That is, when input ends, the connection is held open. you can 
make the connection close by using the `-q n’ flag on the client side, which is supposed to wait n 
seconds after seeing EOF and then close the connection. In my experience the q flag causes a 
close but it is immediate rather than after the n seconds.): 

nc -q 1 <ip from step 1> 6667 < /bin/ls 
7) show that it works (should have the same results): 
​ chmod +x their_ls 
​ ./their_ls 



​ ls 
 
Great, so how could we build this tool. Obviously we are going to need the program to build  
sockets. For this, we need to learn a few more system calls. First, we'll look at an example. 
Check out s11/readclient.c. This code connects to a socket on a named host and port, reads 
from that socket, and writes what comes back to the standard output. Try it like this: 
 
​ make 
​ ./readclient cs61.seas.harvard.edu 6162 
 
What's different between readsocket and netcat? 
 
Netcat also reads from the standard INPUT and writes to the socket. 
 
Cool, let's fix that. Check out bidiclient.c. For example: 
 

./bidiclient cs61.seas.harvard.edu 6163 
(type some stuff at standard input) 

 
And for comparison: 
 

nc cs61.seas.harvard.edu 6163 
(type some stuff at standard input) 

 
For your information, the program running on cs61's port 6163 is cs61echo.c. 
 
What's different between bidiclient and netcat? What different output do you see? Why in the 
code is this happening? 
 
Bidiclient always reads from the standard input first. So if the remote socket writes something 
first, it won't show up right away. Also, bidiclient alternates between one read system call per 
reading file descriptor (standard input and the socket). So if the remote socket has a lot to say 
(more than one read is necessary), bidiclient will get behind. 
 
What we need is logically to run two procedures in parallel: one that reads from standard input 
and writes to the socket, and one that reads from the socket and writes to standard output. How 
can we do this? 
 
There are several ways to handle logically parallel connections. One, called event-driven 
programming, involves system calls that can handle many file descriptors at once. The key 
event-driven system call is select(), which waits until at least one of its input file descriptors has 
data ready to read (or space ready to write into). The second, called multi-threading, involves 



splitting the process into multiple logical threads of control, which run in parallel. These 
strategies are implemented by bidiclient2.c and bidiclient3.c, respectively. 
 
Important System Calls and System Structures: 
Overview: 
An Internet Protocol Address or IP address is a user’s numerical identifier on the internet that is 
typically a 32 bit number.  A port is a logical connection portal on your computer, represented by 
a number from 0 to 65535.  When your computer connects to a host server computer, the 
connection is made between an assigned outgoing port on the client’s computer and a specific 
incoming port on the host computer.  For example, when you access http://www.google.com, 
you are actually accessing http://www.google.com:80, as this is the default port for web servers.  
Ports are numbered for consistency and programming with multiple different purposes.  A port is 
associated with an IP address of the host and this is important as it allows applications or 
processes running on a single computer to be uniquely identifiable such that they can share a 
single physical connection. 
 
Struct: 
addrinfo 
The addrinfo  structure contains the following fields: 
struct addrinfo { 
​ int​ ​ ​ ai_flags; 
​ int​ ​ ​ ai_family; 
​ int​ ​ ​ ai_socktype; 
​ int​ ​ ​ ai_protocol; 
​ socklen_t​ ​ ai_addrlen; 
​ struct sockaddr*​ ai_addr; 
​ char*​ ​ ​ ai_canonname; 
​ struct addrinfo*​​ ai_next; 
}; 
This ai_flag field specifies additional options (i.e. AI_PASSIVE, etc.) and multiple flags are 
OR-ed together.  The ai_family field specifies the desired address family for the returned 
addresses (i.e. AF_INET, etc) and the ai_socktype field specifies the preferred socket type such 
as SOCK_STREAM or SOCK_DGRAM.  The ai_protocol field specifies the protocol for the 
returned socket addresses and the ai_addrlen contains the length of the socket address.  The 
ai_addr field contains the socket address.  The ai_canonname field points to the official name of 
the host.  The ai_next field points to the linked list of addrinfo structures, one for each network 
address that matches node and service. 
Calls: 
getaddrinfo() 
int getaddrinfo(const char* node, const char* service, const struct addrinfo* hints, struct addrinfo** res) 
This function returns one or more addrinfo structures and the first two arguments are the above 
mentioned node and service, which identify an internet host and a service.  The hints argument 
points to an addrinfo structure that contains criteria for selecting the socket address structures.  

http://www.google.com
http://www.google.com:80


If hints is not NULL it points to a structure whose ai_family, ai_socktype, and ai_protocol limit 
the set of socket addresses that can be returned by the function.  The res argument points to 
the linked list that will be returned by the function. 
 
socket() 
int socket (int namespace, int style, int protocol) 
This function creates a socket and specifies the communication style (per the style argument), 
which will be one of the defined socket styles.  The return value from socket is the file descriptor 
for the new socket, or -1 in case of error.  The potential errno error conditions are the following: 
EPROTONOSUPPORT: The protocol or style is not supported by the namespace specified. 
EMFILE: The process already has too many file descriptors open. 
ENFILE: The system already has too many file descriptors open. 
EACCES: The process does not have the privilege to create a socket of the specified style or 
protocol. 
ENOBUFS: The system ran out of internal buffer space. 
The file descriptor returned by the socket function supports both read and write operations, but 
they do not support file positioning operations. 
 
connect() 
int connect(int socket, struct sockaddr* addr, socklen_t length) 
This function initiates a connection from the socket with file descriptor socket to the socket 
whose address is specified by the addr and length arguments.  The function will wait until the 
server responds to the request before it returns.  Upon success, connect() will return 0, and if an 
error occurs, it returns -1.  The following errno conditions are defined for this function. 
EBADF: The socket is not a valid descriptor. 
ENOTSOCK: The file descriptor is not a socket. 
EADDRNOTAVAIL: The specified address is not available on the remote machine. 
EAFNOSUPPORT: The namespace of the addr is not supported by this socket. 
EISCONN: The socket is already connected 
ETIMEDOUT: The attempt to establish the connection timed out. 
ECONNREFUSED: The server has refused to establish the connection: 
ENETUNREACH: The network of the given addr isn’t reachable from this host. 
EINPROGRESS: The socket is non-blocking and the connection couldn’t be established 
immediately. 
EALREADY: The socket is non-blocking and already has a pending connection in progress. 
 
listen() 
int listen (int socket, int n) 
The listen function enables the socket (socket) to accept connections, which makes it a server 
socket.  The argument n specifies the length of the queue for pending connections.  The 
function returns 0 on success and -1 on failure.  The following errno conditions are defined for 
this function. 
EBADF: The argument socket is not a valid file descriptor. 



ENOTSOCK: The argument socket is not a socket. 
EOPNOTSUPP: The socket socket does not support this operation. 
 
accept() 
int accept (int socket, struct sockaddr* addr, socklen_t* length_ptr) 
This function is used to accept a connection request on the server socket socket.  The function 
waits if there are no connections pending.  The addr and length_ptr arguments are used to 
return information about the name of the client socket that initiated the connection.  Accepting a 
connection creates a new socket which becomes connected to the socket argument.  The 
normal return value is the file descriptor for the new socket.  If an error occurs, the function 
returns -1.  The following errno conditions are defined for this function: 
EBADF: The argument socket is not a valid file descriptor. 
ENOTSOCK: The descriptor is not a socket. 
EOPNOTSUPP: The descriptor does not support this operation. 
EWOULDBLOCK: The socket has nonblocking mode set. 
 
send() 
ssize_t send (int socket, const void* buffer, size_t size, int flags) 
This function is similar to write, but with the additional flags argument.  This function returnsthe 
number of bytes transmitted or -1 on failure.  However, it should be noted that a successful 
return value indicates that the message has been sent without error, but not necessarily that is 
has been received without error.  The following errno error conditions are defined for this 
function: 
EBADF: The socket argument is not a valid file descriptor. 
EINTR: The operation was interrupted by a signal before any data was sent. 
ENOTSOCK: The descriptor is not a socket. 
EMSGSIZE: The socket type requires that the message be sent atomically, but the message is 
too large for this to be possible. 
EWOULDBLOCK: Nonblocking mode has been set on the socket. 
ENOBUFFS: There is not enough internal buffer space available. 
ENOTCONN: The socket was never connected. 
EPIPE:  The socket connection is now broken. 
 
recv() 
ssize_t recv (int socket, void* buffer, size_t size, int flags) 
This function is similar to read, but with the additional argument of flags.  This function returns 
the number of bytes received, or -1 on failure.  The following errno conditions are defined for 
this function: 
EBADF: The socket argument is not a valid file descriptor. 
ENOTSOCK: The descriptor socket is not a socket. 
EWOULDBLOCK: Nonblocking mode has been set on the socket, and the ready operation 
would block. 
EINTR: The operation was interrupted by a signal before any data was ready. 



ENOTCONN: The socket was never connected. 
 
close() 
int close (int filedescriptor) 
This function closes the socket represented by the given file descriptor.  The normal return value 
is 0 and -1 is returned in case of failure.  The following errno conditions are defined for this 
function: 
EBADF: Not a valid file descriptor. 
EINTR: The close call was interrupted by a signal. 
 
 
​  
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