TinyDb_export_import

Oct 2018

Backaround

Sample Run
My sample data

Designer
Components
IbIDump
IvwDump
btnExport
btnimport

btnDump
btnClear

btnTestData
tXbExplm

Blocks
When btnExport.Click
exportTinyDB

dumpTinyDB
Dimensions

maxSubDimension
Exportable
When btnimport.Click
importTinyDB

Importable
All blocks (in case | missed something)

Gallery Link

Other Projects

Background

This app was developed to show how to export and import the complete contents of a TinyDB
into and out of a block of text, suitable for writing and reading to and from an external text file for
backup and recovery purposes.

This is not meant as an introduction to TinyDB or to list processing. It is meant to be useful in its
own right as a tool. It’s not necessary to fully understand the internals of a tool to use it, though
it helps to understand the limitations of a tool.

Sample Run

LI 5554: <build > = =

Screent

“Author™,"Abe G"

“Pi","3.14"

“Scores”,"(JAI2 9) (Chrome 7.5) (GenyMotion
Free 9.5))"

“Tools","(Al2 Chrome GenyMotion Free)”

(Expor | mport | Dump || Gesr || T,

bauthor,"0","Abe G

Ilpl I-I I-DI II 3_ 1 ‘H

"SgOresh 12" AL mngus
"Chrome"","7.5""
"GenyMotion Free" " 5.5"™

"T‘-'.'-IDIS“,“ 1 "g"" FA]E""," Fﬂ.lrum E-l I-I
"“GemyMotion Free""*

This is the screen display of a sample run, using my sample data.

The top section contains a dump of my TinyDB sample, with four tag/value pairs, shown in the
lazy and non-reversible Al2 list to text transformation, using parentheses and spaces to wrap list
items.

The middle section has some buttons to exercise the various facilities , explained later.

The bottom section has the exported text of the TinyDB contents, complete with tags, values,
and an extra dimension column needed to help reconstitute the values when re-importing the
text into a new TinyDB.

My sample data

I included four pieces of data, to show off how | handle simple values, lists, and tables.

e Simple values (0 dimensions)
o Tag = “Author”, value = “Abe G”
o Tag = “Pi", value = “3.14”

e Lists (1 dimension)
o Tag = “Tools”,

m Value =
o “Al2"
e “Chrome”

e “Genymotion Free”
e Tables (2 dimensions)
o Tag = “Scores”,
m Value =
e “Ai2",9
e “Chrome”, 7.5
e “Genymotion Free”, 9.5

| have listed my sample data here in ascending order by dimension, from simplest structure
(plain values) to complex (two dimensional tables.) My sample data displayed by the app
comes out in tag order, which TinyDB returns alphabetically by tag.

Designer

D :3-7'-;@]7..‘55.: Screen1 + || Add Screen Remove Screen Designer || Blocks

Palette Viewer Components Properties

User Interface

Display hidden companents =] Screen1 txbExpimp
R iew on Tabl \ Sc Arr
@ Button e . 9 HVerticalScrollAmangemen BackgroundColor
M Checkd " 948 IbIDump B Defauit
eckBox —
ot = ivwDump Enabled
DeteFicker . 8 PHorizontalAmangemen | | 2
] ‘IWEI}E Export Import Dump Clear TestData _btnE-\pa't FentBold
Hotnimport
Label G Fontltalic
IpkDump
ListPicker .
Hbtndump
A FontSize
= Listview SbtnClear 4o
btnTestData
Notifier FontTypeface
bExplmp
PasswordTextBox default -
Notifier]
Height
W Sider TinyDB1 o
B Spinner
Width
TextBox -
TimePicker g Hint
E: rts and Imports.
@ WebViewer 3)
Rename Delete MultiLine
¢
Layout
o (e} = . NurmbersOnly
Media Media

Non-visible components

Components

IbIDump

A label for output of a dump of TinyDb. A dump is a haphazard lazy export, too jumbled for
re-import.

IvwDump

A ListView for output of a dump of TinyDb. A dump is a haphazard lazy export, too jumbled for
re-import.

btnExport

The Export button. It formats TinyDB into one piece of text, then sends it to the output text box.

btnimport

The Import button. It takes the text from the output text box, reforms it into its original tags and
values, and loads them into TinyDB.

btnDump
The Dump button. It sends the contents of TinyDB to [bIDump.

btnClear
The Clear button. It clears TinyDB.

btnTestData
The Test Data button. It loads test data into TinyDB.

txbExplmp

The Export/Import Text box. Target for export, source for Import. A Text Box is better for this
than a Label, because you can cut and paste it in an emulator.

Blocks

When btnExport.Click

71 =1l binExport ~ J# x4
gon set [0S - tol "0
= txbExpimp -~ 8 to | call EENANTEES

h

The Export button clears label IbIDump to make room on the screen for txbExplmp, which is
loaded from procedure exportTinyDB.

exportTinyDB

B sxportTinyDB

result | (@) initialize local | Jto | (@ create empty list

initialize local | AN dumpTinyDB ~ |
™ " do [foreach[-)inlist | get GG RA

do | (o initialize local () to | select list item list | get (ETIED | index)

initialize local (00 to | select list item list | get (=5A | index | §))
intialize local (X7 to | ([

UREEE Dim - RCREEN I Dimensions * L8l 4 value - |
o) add items fo list list | get EInc N0

tem | call
tag | get [EVIED

dim | get [N
value | get REITENE

] result | listto csviable list | get Erucel Rl

This is a value procedure, returning a Comma Separated Values (CSV) text representation of a
table of the exportable representation of each (tag,dimension,value) row.

It works in three phases:
1. Extract all (tag/value) pairs from TinyDB into local variable dump using procedure
dumpTinyDB
2. For each dumped pair (tag/value), get the dimension (0/1/2) of that value
3. Build an exportable row suitable for adding to a 2 dimensional table representing the tag,
dimension, value

Finally, it returns the CSV Table text.

dumpTinyDB

BN @)) dumpTinyDB

result [(@) initialize local (07) to [(@] create empty list

initialize local | | to =1l TinyDB1 » MeSIELS

in

do

do (foreach(.)inlist | get ZFoED

o additemstolist list | get GV Rl
item | (@) make a list

call _GetValue

tag

valuelfTagNotThere

This value procedure returns a two column table with each row containing a TinyDB tag in
column 1, and its corresponding TinyDB value in column 2. Notice that this works only in
Tinydb1. If you want to use multiple TinyDB instances with different name spaces, you will have

to add that yourself.

Dimensions

Return @,1, or 2,
depending on its
input being a
scalar, list, or
two dimensional
table.

y if | isalist? thing = get E3B

then | (@) _)
0 ca ist | get £

else | [

To determine the number of dimensions of a structure, we divide up the question recursively
using a helper procedure maxSubDimension. If the structure is not a list, it has dimension 0.
Otherwise, it’s at least a list and its dimension is 1 more than the highest dimension of the items

in that list.

maxSubDimension

(c)(2) 1o Cist

I result | (o] initialize local |

jio |)

Return the highest initialize local (ET:011) to m
dimension of any . S
of the items in a n ™ ——
list. do | foreach(T=) inlist | get [EID
. SRRl subDim © LCRPEY Dimensions + PREEPT ftem +

set CIIND to || (o) G || oet LD
2] subDim -

i

This can get a bit mind boggling. We are about to use recursion, where a procedure calls
another procedure that may have called it. The recursion must eventually end, as long as it is
working with a value from TinyDB, which filters out abnormal lists like the notorious Ouroborous.

We return a local variable Dim, which is initially 0, but is compared to the dimension of each
item in the input list, and is set to the maximum of itself or that new dimension value.

After exiting the for each loop, variable Dim will have the maximum value of the dimensions of
all the items in the given list.

Exportable

o to | tag |1 dim [1] value
result [(o] makealist | get ERES
get LIS

ST im - i = - [0]

= e value * |
e 1 et dim * = " IM 1)

then listtocsvrow list = get REIEED
else | listtocsvtable list | get FEEED

To make an exportable representation of a TinyDB tag and its value, we have to flatten the value
so it will fit into a piece of text in the 3rd position of a list (tag, dimension, flattened value).
Fortunately, we have available the dimension (0/1/2) of the value in our second input parameter.

https://drive.google.com/open?id=1XylrxzxksNy4aea8IkuslJOl0DvZgsRniSrqKhkf7pk

A 0 dimensional value is okay in itself, and can be used directly. A 1 dimensional value can be
run through the list to csv row block to turn into a CSV row text. A 2 dimensional value can be
run through the list to csv table block to turn into a CSV table text. If the dimension is higher
than 2, all bets are off, and the app developer should read up on the relational model then
redesign his data structures.

The output of this procedure will be a 3 item list (tag, dimension, flat text value).

When btnimport.Click

when Click

The Import button takes the contents of text box txbExplmp and loads it into TinyDB1 through
procedure importTinyDB.

importTinyDB

SR importTinyDE J text)
do | (@ initialize local [Jto | listfromcsviable text | get [Eh®

in [foreach (- Jinlist | get FCic N8
do | (0] initialize local (=0 to | select listitem list | get (ZTIA | index §D

initialize local [) o | salect list item list get [E0RS | index |

initialize local (L 1Z)to | select list item list | get [T | index | E)

[1l TinyDB1 * BESGIEAEE
tag
valueToStore | call
dim | get BN
csv | get REIORS

This procedure does the opposite of the exportTinyDB procedure. It accepts a CSV Table text
block and runs it through a list from csv table block to get a three column (tag,dimension,
exported value) table.

For each row in that table, that row is transformed back into its original tag/value pair using the
importable procedure and the given dimension (0/1/2) number of that value, then stored into
TinyDB1.

Importable

od dim - = v N 1]
then | listfromcsvrow text | get D
else | listfromcsvtable text = get 7D

This value procedure does the opposite of the exportable procedure, reconstituting a simple
value, list, or table from a text value and its dimension number, using the list from csv row or
list from csv table blocks, as appropriate.

All blocks (in case | missed something)

cal QETSEIRD CelTags
ool ETETE

et co e et
oot CESTTTREDSD

Containing 5

e of text
1 ot

o

put valse, given

its disensions (9,1,4)

of et
e value

rrom exported

table, depending on the
dinantions specifind

i vt ot to

Tinyon, including

dinensions ©,1,2

Gallery Link
ai2.appinventor.mit.edu/?galleryld=6019316599488512

Other Projects

https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy Rf6vT600zxdIWglgbmzroA/ed
it?usp=sharing

http://ai2.appinventor.mit.edu/?galleryId=6019316599488512
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing

	TinyDb_export_import
	Background
	Sample Run
	My sample data

	Designer
	Components
	lblDump
	lvwDump
	btnExport
	btnImport
	btnDump
	btnClear
	btnTestData
	txbExpImp

	Blocks
	When btnExport.Click
	exportTinyDB
	dumpTinyDB
	Dimensions
	maxSubDimension

	Exportable

	When btnImport.Click
	importTinyDB
	Importable

	All blocks (in case I missed something)

	Gallery Link
	Other Projects

