Lab 05. Knacudikauisa TekcTy

1. MeTta poboTtun

HasunTtuca npaurosaTtn 3 Metogamum knacudikadii Tekcty y Python, BukopuctoByeaTu
BekTopuaauito Tekcty (TF-IDF, CountVectorizer, HashingVectorizer), peanizoBysatu Ta
ouiHoBaTK mogeni knacugikauii (Naive Bayes, Logistic Regression, Random Forest), a
TaKOX aHanisyBaTu sKiCTb MOAenen 3a 4onomoro MeTpuk (accuracy, ROC-AUC Towo).

OudikyBaHWK pe3ynbrarT:
Micnsa BMKOHaHHSA nabopaTopHoi poboTh CTYOEHT YMiE:

e MepeTBOpHBATU TEKCT Y YNCHOBI BEKTOPY;

e OyayBaTtu Knacudikatopu ons TEKCTOBUX OAHUX;

e aHanisyBaTW SKiCTb MoAenewn;

® OKPUBATU KOA KOHIT-TECTaMM 3 BUKOPUCTaHHAM pytest.
2. 3aBOaHHS

[nsa KOXHOro 3 HaBegeHNX hparMeHTIB Yy>KOro Kogy HeobXxigHoO:

1. TpoaHanisyBaTu noriky pobotn, 3HanT! NOMUIKN Ta HEAOMIKN.
2. MNepenucaTtu Kkopa y BUrMSAi 3p03yMinunx yHKLi abo knacis i3 4OK-psagKkamu
(docstrings) Ta type hints.
3. lNpokomeHTyBaTn Noriky y Burmsai komeHtapie abo markdown-6nokis.
4. TMokpwuTu KopA loHIT-TecTamu (pytest), nepesipnsLun:
o dopMy Ta TUN BMXIiAHUX SaHUX (MaTpuli, Mogeni, METPUKK);
O KOPEKTHICTb pe3ynbraTiB (Hanpuknag, accuracy = 0.5);
O MOBEAiHKY Ha rpaHuYHKUX BUnNagkax (with pytest.raises(...)).

3. BapiaHTn kogy

BapiaHT 1. CountVectorizer + Naive Bayes

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

train = fetch_20@newsgroups(subset="train")

vec = CountVectorizer(stop_words="english")

X = vec.fit_transform(train.data)

clf = MultinomialNB()

clf.fit(X, train.target)

print("Train acc:", clf.score(X, train.target))

BapiaHnT 2. TF-IDF + LogisticRegression (6e3 Hopmanisauir)

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression

tfidf = TfidfVectorizer(max_features=8000)

X = tfidf.fit_transform(train.data)

1r = LogisticRegression(max_iter=1000)

1r.fit(X, train.target)

BapiaHT 3. NpenpoueciHr 3i cTemMiHrom
import re, nltk, pandas as pd
stemmer = nltk.PorterStemmer()
def clean(s):
s = re.sub(r"\W+", , s.lower())
return " ".join(stemmer.stem(w) for w in s.split())
df = pd.DataFrame({"txt": train.data})
df["clean"] = df["txt"].apply(clean)

BapiaHT 4. Random Forest Classifier Ha pospigxeHin matpuui

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=50, n_jobs=-1)
rf.fit(X.toarray(), train.target)

BapiaHT 5. He3banaHcoBaHui train/test split (6e3 stratify)

from sklearn.model_selection import train_test_split

Xtr, Xte, ytr, yte = train_test_split(X, train.target,
test_size=0.3,

random_state=42)

BapiaHT 6. Pipeline + GridSearchCV (nopoxHin param_grid)
from sklearn.pipeline import make_pipeline

from sklearn.model_selection import GridSearchCV
pipe = make_pipeline(TfidfVectorizer(),
LogisticRegression(max_iter=2000))

grid = GridSearchCV(pipe, param_grid={}, cv=3)
grid.fit(train.data, train.target)

BapiaHT 7. Nomunkoea ouiHka ROC gnga 6aratoknacy

from sklearn.metrics import roc_curve, auc

proba = clf.predict_proba(X)

fpr, tpr, = roc_curve(train.target, proba[:,1]) # 6araToknac?

print(auc(fpr, tpr))

BapiaHT 8. HashingVectorizer (sign collision)

from sklearn.feature_extraction.text import HashingVectorizer
hv = HashingVectorizer(n_features=2**18) # alternate_sign 3a
3aMoBYyBaHHAM True

Xh = hv.transform(train.data)

BapiaHnT 9. Custom tokenizer + LogReg, BigcyTHi uncna

token = lambda s: re.findall(r"[A-Za-z]+", s.lower())
cv
Xc
1r

CountVectorizer(tokenizer=token)

cv.fit_transform(train.data)

LogisticRegression(max_iter=1500).fit(Xc, train.target)

BapiaHT 10. BisyansHui aHanis saxnueux cnis (coef)

import numpy as np

top = np.argsort(lr.coef_[0])[-10:]
print([tfidf.get_feature_names_out()[i] for i in top])

4. Xig pobotu
1. O3HaMoOMIEeHHs 3 Teopicto:
MoTopiTb NoHATTS TF-IDF, CountVectorizer, TokeHisauito, CTeMiHr, nematnsadito,

©a3oBi Mmogeni knacudikauii TEKCTY.

2. AHanis BuxigHoro koay:
Bnbepitb oauH i3 BapiaHTiB (1-10) i BU3HauTe:

O SKY 3agadvy BiH BUKOHYE;
o §Ki B HbOMY NoMunkm abo crnabki micus;
O SIK MOXHa MigBULLMTK CTabIiNbHICTb i AKICTb KOay.

3. PedakTopuHr:
MepennwiTb Kog, CTPYKTYPOBaAHO pO34inuBLUN dOyHKLI:

o load_data() — 3aBaHTaxeHHs gaTacerty;
o preprocess(texts) — OUNLLEHHS TEKCTY (PErynsipku, CTEMIHr);

o vectorize(train, test, method="tfidf") — nobynoBa BekTOpHOro
NOAAHHS;

o train_model(X, y, model_name) — HaBYaHHs knacudikaTopa;
o evaluate(y_true, y_pred, y_proba=None) — obuMcneHHs MeTpuK.

4. HanucaHHA TecTiB:
MepekoHarTecs, WO KOXXHa OYHKLiA Mae TeCTu:

o assert X.shape[0] == len(y)
o assert 0.0 <= acc <= 1.0

o with pytest.raises(ValueError): vectorize([""],
method="bogus")

5. OcpopmneHHs pe3ynbrarTiB:
MigroTynTe 3BIT i3 NOACHEHHSIM MNOriKM KoAy, CKPIHLLOTaMWN pe3ynbLTaTis i BUCHOBKaMMU.

5. HekrnicT ans nepesipku BUKOHAHHA 3aBOaHHS
KpuTtepin BukoHaHO
€ (yHKUioHanbHa cTpykTypa koay (load_data, preprocess, vectorize,
train_model, evaluate)
[opaHo gok-psakm Ta type hints
HanuncaHo woHanmeHwwe 3 oHiT-Tectn (pytest)

BunpaeneHo noriyHi abo CMHTaAKCUYHI NOMUIKN y pparMeHTi
Mogenb ycnilwHO HaBYaeTbCA Ta OLUiHIOETLCA (accuracy = 0.5)

lNpooemMoHCcTpoBaHO peakLito Ha edge cases

Koa Bignosigae ctunio PEP8 (black, flake8)

€ KOpOTKi NosiCHEHHs1 abo markdown-KomeHTapi

6. KopoTki TeopeTn4Hi BigOMOCTI

6.1. OcHoBM Knacuikauii TEKCTY

Knacudikauis TekcTy — Le 3agaya aBTOMaTMYHOIO BiAHECEHHSI LOKYMEHTa A0 ofHiei abo
KinbKox Kkateropiv (Hanpuknag, "cnopt", "nonituka", "Hayka").
BoHa € nig3agayeto o6po6ku npupoaHoi mosu (NLP) i wmpoko 3actocoByeTbCs Yy

cnam-inbrpax, aHanisi HacTpoiB, kKaTeropraadii HOBMH, peKoOMeHaaUINnHMX cMcTeMax ToLO.
OcHoBHi eTanu:

306ip Ta OUMLLEHHA AaHUX.

MonepenHAa o6pobka TeKCTy (preprocessing).
BekTopu3sauis (nepeTBOPEHHA TEKCTY Y YMCna).
HaB4aHHsA knacudpikaTopa.

OLuiHKa AKOoCTi.

akrowbd~

6.2. NonepeaHa obpobka TekcTy (Preprocessing)
OcHoBHa MeTa — niaroTyBaTn TEKCTU A0 BeKTopu3auii. TUMNoBi KPOKK:

HwxHin perictp (Lower ()): yHicbikauia HanucaHHs.

BuaaneHHA HebGaxxaHUX cumBoniB: nyHkTyauii, HTML-TeriB, undp (re . sub).
TokeHi3auin: po3butta TekcTy Ha cnoea (nltk.word_tokenize).
BupaneHHsa cTon-cniB: Hanpuknag, “the”, “and”, “of”
(stopwords.words('english')).

e CremiHr / llemaTtusauisi: 3BegeHHs1 cnis go 6asoeoi bopmu (PorterStemmer,
WordNetLemmatizer).

Mpuknap:

def preprocess(text: str) -> str:
text = re.sub(r"\W+', ' ', text.lower())
stemmer = nltk.PorterStemmer()
return ' '.join(stemmer.stem(w) for w in text.split())

6.3. MeToau BekTOpmU3aUil

1. CountVectorizer
[MepeTBOpPOE TEKCTM Y YACTOTHY MaTPULIO: KOXKEH €NEMEHT = KiflbKiCTb BXOLKEHb
cnoea.
dopmyna:

X{j = CD'L].L‘[t(HJj, di)

lNepeBaru: npocTa peanisadisi, LWUBUOKICTb.
Heponikn: He BpaxoBye BaXXNUBICTb ChiB.

TF-IDF (Term Frequency—Inverse Document Frequency)
BpaxoBye gk 4acToTy CrioBa B AOKYMEHTI, TaK i NOro pigkiCTb y KOpnyci:

tfidf(t,d) = tf(t,d) - log %(t)

Migkpecntoe yHikanbHi TepMiHW, 3HWXKYE Bary NoLMpeHuX CriiB.
HashingVectorizer

BukopucToBye xeLlyBaHHA AN NEPETBOPEHHSA TOKEHIB Y iHAEKCU hikcoBaHOI
JoBXuHW. WBMAKMI | namM’ aTTEBO-e(PEKTMBHUN, ane He Mae “3BOPOTHONO CIIOBHUKA”.

Word Embeddings (po3wmpeHo, ana gosiakn)
Metoaun Ha kwtanT Word2Vec, GloVe, FastText cTBOPIOWThL LUiMbHI BEKTOPWU, SAKi

BigoOpaxatoTb CEMaHTUKY CrliB.

6.4. Knacudikatopu

Mopenb MpuHUKMN po6oTun MepeBarun Heponiku

Multinomial BukopucrtoBye MpocTtuin, epekTBHUN ITHOpYE

Naive Bayes Teopemy baneca 3 ONs TEKCTiB. 3anexHOCTi MiXK
NpUNYLLEHHSM cnosamu.
He3aneXxHoCTi O3HaK.

Logistic JliHinHa mopenb, [obpa MoTpebye

Regression NPOrHO3ye iMOBIPHICTb IHTEPNPETOBaHICTb, HopManisauii,
HaneXHoCTi 4o Knacy. cTabinbHa. yyTnmBa oo

BUKNAIB.

Random Forest

AHcambnb gepes

Crinkun, pobpe

MNoBinbHU Ha

pileHb, npautoe 3 y3aranbHIOE. BEINMKNX
HeniHInHMMK PO3pigKEHNX
3aneXHOCTAMN. MaTpuusX.

6.5. OuiHka akocTi mogenen

OCHOBHI METPUKN:

L] Accuracy: YacTKa npaBuJibHUX nepe,u,6at-|eHb.

TP + TN
TP +TN + FP + FN

e Precision / Recall / F1-score: 6anaHc mixk noMunkaMmm nNepLioro i opyroro poay.
ROC-AUC: nnowa nig ROC-kpuBoto, kKopucHa gns 6iHapHUX Mmogenen.

Accuracy =

e Cross-validation: ouiHka cTabinbHOCTI Moaeni Ha Pi3HMX MNIOMHOXUHAX OaHUX
(GridSearchCV).

6.6. Npobrnemn Ta TMNOBI NOMUIIKN

1. HesbanaHcoBaHu# train_test_split — BukopuctoByite stratify=y.

2. BbararoknacoBa ROC-kpuBa: roc_curve npaute nviwe ans 2 knacis.

3. BukopuctaHHs .toarray() Ha BeNMMKUX PO3PiAXKEHUX MAaTPULAX: NPU3BOAUTb
00 NepenoBHEHHSA Nam’aTi.

4. MNopoxHin param_gridy GridSearchCV: mogenb He HanawToOBYETbLCS.

5. Xew-konisii y HashingVectorizer: nepesipsante napameTtp
alternate_sign=False.

7. KopUCHi nocunaHHs

° Scikit-learn: https://scikit-learn.org/stable/modules/feature extraction.html

e | | NLTK Documentation: https://www.nltk.org/

e || Pytest: https://docs.pytest.org/

e Text classification tutorial (sklearn):
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text data.html

e @ Code style tools: hitps://black.readthedocs.io/, hitps:/flake8.pycqa.org/

https://scikit-learn.org/stable/modules/feature_extraction.html
https://www.nltk.org/
https://docs.pytest.org/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://black.readthedocs.io/
https://flake8.pycqa.org/

	Lab 05. Класифікація тексту
	1. Мета роботи
	2. Завдання
	3. Варіанти коду
	4. Хід роботи
	5. Чекліст для перевірки виконання завдання
	6. Короткі теоретичні відомості
	6.1. Основи класифікації тексту
	6.2. Попередня обробка тексту (Preprocessing)
	6.3. Методи векторизації
	6.4. Класифікатори
	6.5. Оцінка якості моделей
	6.6. Проблеми та типові помилки

	7. Корисні посилання

