
Lab 05. Класифікація тексту 
 

1. Мета роботи 

Навчитися працювати з методами класифікації тексту у Python, використовувати 
векторизацію тексту (TF-IDF, CountVectorizer, HashingVectorizer), реалізовувати та 
оцінювати моделі класифікації (Naive Bayes, Logistic Regression, Random Forest), а 
також аналізувати якість моделей за допомогою метрик (accuracy, ROC-AUC тощо). 

Очікуваний результат:​
 Після виконання лабораторної роботи студент уміє: 

●​ перетворювати текст у числові вектори; 
●​ будувати класифікатори для текстових даних; 
●​ аналізувати якість моделей; 
●​ покривати код юніт-тестами з використанням pytest. 

2. Завдання 

Для кожного з наведених фрагментів чужого коду необхідно: 

1.​ Проаналізувати логіку роботи, знайти помилки та недоліки. 
2.​ Переписати код у вигляді зрозумілих функцій або класів із док-рядками 

(docstrings) та type hints. 
3.​ Прокоментувати логіку у вигляді коментарів або markdown-блоків. 
4.​ Покрити код юніт-тестами (pytest), перевіривши: 

○​ форму та тип вихідних даних (матриці, моделі, метрики); 
○​ коректність результатів (наприклад, accuracy ≥ 0.5); 
○​ поведінку на граничних випадках (with pytest.raises(...)). 

3. Варіанти коду 
Варіант 1. CountVectorizer + Naive Bayes 
 
from sklearn.datasets import fetch_20newsgroups 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.naive_bayes import MultinomialNB 
train = fetch_20newsgroups(subset="train") 
vec = CountVectorizer(stop_words="english") 
X = vec.fit_transform(train.data) 
clf = MultinomialNB() 
clf.fit(X, train.target) 



print("Train acc:", clf.score(X, train.target)) 
 
Варіант 2. TF-IDF + LogisticRegression (без нормалізації) 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.linear_model import LogisticRegression 
tfidf = TfidfVectorizer(max_features=8000) 
X = tfidf.fit_transform(train.data) 
lr = LogisticRegression(max_iter=1000) 
lr.fit(X, train.target) 
 
Варіант 3. Препроцесінг зі стемінгом 
import re, nltk, pandas as pd 
stemmer = nltk.PorterStemmer() 
def clean(s): 
    s = re.sub(r"\W+", " ", s.lower()) 
    return " ".join(stemmer.stem(w) for w in s.split()) 
df = pd.DataFrame({"txt": train.data}) 
df["clean"] = df["txt"].apply(clean) 
 
Варіант 4. Random Forest Classifier на розрідженій матриці 
from sklearn.ensemble import RandomForestClassifier 
rf = RandomForestClassifier(n_estimators=50, n_jobs=-1) 
rf.fit(X.toarray(), train.target)   
 
Варіант 5. Незбалансований train/test split (без stratify) 
from sklearn.model_selection import train_test_split 
Xtr, Xte, ytr, yte = train_test_split(X, train.target, 
                                      test_size=0.3, 
random_state=42) 
 
Варіант 6. Pipeline + GridSearchCV (порожній param_grid) 
from sklearn.pipeline import make_pipeline 
from sklearn.model_selection import GridSearchCV 
pipe = make_pipeline(TfidfVectorizer(), 
LogisticRegression(max_iter=2000)) 
grid = GridSearchCV(pipe, param_grid={}, cv=3) 
grid.fit(train.data, train.target) 
 
Варіант 7. Помилкова оцінка ROC для багатокласу 
from sklearn.metrics import roc_curve, auc 
proba = clf.predict_proba(X) 
fpr, tpr, _ = roc_curve(train.target, proba[:,1])   # багатоклас? 
print(auc(fpr, tpr)) 



 
Варіант 8. HashingVectorizer (sign collision) 
from sklearn.feature_extraction.text import HashingVectorizer 
hv = HashingVectorizer(n_features=2**18)   # alternate_sign за 
замовчуванням True 
Xh = hv.transform(train.data) 
 
Варіант 9. Custom tokenizer + LogReg, відсутні числа 
token = lambda s: re.findall(r"[A-Za-z]+", s.lower()) 
cv = CountVectorizer(tokenizer=token) 
Xc = cv.fit_transform(train.data) 
lr = LogisticRegression(max_iter=1500).fit(Xc, train.target) 
 
Варіант 10. Візуальний аналіз важливих слів (coef_) 
import numpy as np 
top = np.argsort(lr.coef_[0])[-10:] 
print([tfidf.get_feature_names_out()[i] for i in top]) 
 
 

4. Хід роботи 

1.​ Ознайомлення з теорією:​
 Повторіть поняття TF-IDF, CountVectorizer, токенізацію, стемінг, лематизацію, 
базові моделі класифікації тексту.​
 

2.​ Аналіз вихідного коду:​
 Виберіть один із варіантів (1–10) і визначте:​
 

○​ яку задачу він виконує;​
 

○​ які в ньому помилки або слабкі місця;​
 

○​ як можна підвищити стабільність і якість коду.​
 

3.​ Рефакторинг:​
 Перепишіть код, структуровано розділивши функції:​
 

○​ load_data() — завантаження датасету;​
 

○​ preprocess(texts) — очищення тексту (регулярки, стемінг);​
 

○​ vectorize(train, test, method="tfidf") — побудова векторного 
подання;​
 



○​ train_model(X, y, model_name) — навчання класифікатора;​
 

○​ evaluate(y_true, y_pred, y_proba=None) — обчислення метрик.​
 

4.​ Написання тестів:​
 Переконайтеся, що кожна функція має тести:​
 

○​ assert X.shape[0] == len(y)​
 

○​ assert 0.0 <= acc <= 1.0​
 

○​ with pytest.raises(ValueError): vectorize([""], 
method="bogus")​
 

5.​ Оформлення результатів:​
 Підготуйте звіт із поясненням логіки коду, скріншотами результатів і висновками.​
 

 

5. Чекліст для перевірки виконання завдання 

Критерій Виконано  

Є функціональна структура коду (load_data, preprocess, vectorize, 
train_model, evaluate) 

 

Додано док-рядки та type hints  

Написано щонайменше 3 юніт-тести (pytest)  

Виправлено логічні або синтаксичні помилки у фрагменті  

Модель успішно навчається та оцінюється (accuracy ≥ 0.5)  

Продемонстровано реакцію на edge cases  

Код відповідає стилю PEP8 (black, flake8)  

Є короткі пояснення або markdown-коментарі  

 

6. Короткі теоретичні відомості 



6.1. Основи класифікації тексту 

Класифікація тексту — це задача автоматичного віднесення документа до однієї або 
кількох категорій (наприклад, "спорт", "політика", "наука").​
 Вона є підзадачею обробки природної мови (NLP) і широко застосовується у 
спам-фільтрах, аналізі настроїв, категоризації новин, рекомендаційних системах тощо. 

Основні етапи: 

1.​ Збір та очищення даних. 
2.​ Попередня обробка тексту (preprocessing). 
3.​ Векторизація (перетворення тексту у числа). 
4.​ Навчання класифікатора. 
5.​ Оцінка якості. 

6.2. Попередня обробка тексту (Preprocessing) 

Основна мета — підготувати тексти до векторизації.  Типові кроки: 

●​ Нижній регістр (lower()): уніфікація написання. 
●​ Видалення небажаних символів: пунктуації, HTML-тегів, цифр (re.sub). 
●​ Токенізація: розбиття тексту на слова (nltk.word_tokenize). 
●​ Видалення стоп-слів: наприклад, “the”, “and”, “of” 

(stopwords.words('english')). 
●​ Стемінг / Лематизація: зведення слів до базової форми (PorterStemmer, 

WordNetLemmatizer). 

Приклад: 

def preprocess(text: str) -> str: 
    text = re.sub(r'\W+', ' ', text.lower()) 
    stemmer = nltk.PorterStemmer() 
    return ' '.join(stemmer.stem(w) for w in text.split()) 
 

 

6.3. Методи векторизації 

1.​ CountVectorizer​
 Перетворює тексти у частотну матрицю: кожен елемент = кількість входжень 
слова.​
 Формула:​

 ​
 Переваги: проста реалізація, швидкість.​
 Недоліки: не враховує важливість слів.​
 



2.​ TF-IDF (Term Frequency–Inverse Document Frequency)​
 Враховує як частоту слова в документі, так і його рідкість у корпусі:​

​​
 Підкреслює унікальні терміни, знижує вагу поширених слів.​
 

3.​ HashingVectorizer​
Використовує хешування для перетворення токенів у індекси фіксованої 
довжини.  Швидкий і пам’яттєво-ефективний, але не має “зворотного словника”.​
 

4.​ Word Embeddings (розширено, для довідки)​
 Методи на кшталт Word2Vec, GloVe, FastText створюють щільні вектори, які 
відображають семантику слів. 

6.4. Класифікатори 
Модель Принцип роботи Переваги Недоліки 

Multinomial 
Naive Bayes 

Використовує 
теорему Байєса з 
припущенням 
незалежності ознак. 

Простий, ефективний 
для текстів. 

Ігнорує 
залежності між 
словами. 

Logistic 
Regression 

Лінійна модель, 
прогнозує імовірність 
належності до класу. 

Добра 
інтерпретованість, 
стабільна. 

Потребує 
нормалізації, 
чутлива до 
викидів. 

Random Forest Ансамбль дерев 
рішень, працює з 
нелінійними 
залежностями. 

Стійкий, добре 
узагальнює. 

Повільний на 
великих 
розріджених 
матрицях. 

 

6.5. Оцінка якості моделей 

Основні метрики: 

●​ Accuracy: частка правильних передбачень.​

​ 
●​ Precision / Recall / F1-score: баланс між помилками першого і другого роду. 
●​ ROC-AUC: площа під ROC-кривою, корисна для бінарних моделей. 



●​ Cross-validation: оцінка стабільності моделі на різних підмножинах даних 
(GridSearchCV). 

6.6. Проблеми та типові помилки 

1.​ Незбалансований train_test_split → використовуйте stratify=y. 
2.​ Багатокласова ROC-крива: roc_curve працює лише для 2 класів. 
3.​ Використання .toarray() на великих розріджених матрицях: призводить 

до переповнення пам’яті. 
4.​ Порожній param_grid у GridSearchCV: модель не налаштовується. 
5.​ Хеш-колізії у HashingVectorizer: перевіряйте параметр 

alternate_sign=False. 

7. Корисні посилання 

●​ 📘 Scikit-learn: https://scikit-learn.org/stable/modules/feature_extraction.html​
 

●​ 📗 NLTK Documentation: https://www.nltk.org/​
 

●​ 📙 Pytest: https://docs.pytest.org/​
 

●​ 📒 Text classification tutorial (sklearn): 
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html​
 

●​ 🧰 Code style tools: https://black.readthedocs.io/, https://flake8.pycqa.org/​
 

 

https://scikit-learn.org/stable/modules/feature_extraction.html
https://www.nltk.org/
https://docs.pytest.org/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://black.readthedocs.io/
https://flake8.pycqa.org/
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