KASSU 2021 BIOLOGY PAPER 3 MARKING SCHEME

1. You are provided with the photomicrograph of an onion outer epidermis as seen under light microscope

a) On the photograph, name parts labelled A, C, and D (3marks)

A chloroplast;

C cell membrane;

D cytoplasm;

a) Explain how the part **labelled B** is adapted to its function

(2marks)

Cell wall contain the polysaccharide cellulose; that give mechanical support

b) Calculate the actual size of the cell **marked K**, give your answer in micrometres (2marks)

 $Mg = \underbrace{image \ size}_{Actual \ size}$ $1500 = \underbrace{4.4 \times 10,000;}_{Actual \ size}$ $= \underbrace{44000}_{1500}$ = 29.3um; units

c) The differences between the cells in the photograph and those obtained from an animal epithelial cells (3marks)

Onion epidermal cells	Animal epithelial cells
Cell wall present	Cell wall absent;
Chloroplast present	Chloroplast absent;
Nucleus located at the periphery	Centralised nucleus;

- d) State the process that make the structures in the cell above appear more distinct (1mark) *Staining*;
- e) In microscopic procedure in 1 (e) above name what was used to achieve the process (1mark)

Iodine stain,; methylene blue ; eosin accept any one

2. The photographs below represent specimen labeled A, B, C and D

SPECIMEN A	SPECIMEN B
SPECIMEN C	SPECIMEN D

- i) Name the type of placentation shown in specimen A and B (2 marks)
 - A Axile;
 - B free central;
- ii) Identify the type of sections from which specimen C and D was obtained?

(2 marks)

C cross section/transverse section;

- D. Longitudinal section;
- iii) Classify the above specimen labeled D (1mark)
 Succulent;
- iv) You are provided with specimen labeled **D1**, **D2**, **D3** and **D4**. Examine them Draw and label specimen labeled **D2** (3marks)

v) Giving a reason and state the agent of dispersal of the specimen (6marks)

	ecimen Agent of dispersal
_	
es of	Animal;
or it to	Wind;
or i	Wind;

D4	Animal;	Brightly coloured, succulent to attract animals that feed on it;

- 3. You are provided with the following. Solution P, Q and Z.
 - (a) (i) Put 2 cm3 of solution P into two test tubes labeled A and B. Add iodine solution drops into test tube A. Observe and record. (1 mark)

Blue-black colour observed;

(ii)To test tube B, add an equal amount of Benedict's solution. Heat to boil. Record your observation. (1 mark)

Blue-black of Benedict's solution persist;

(iii) From the results in (a) (i) and (ii), Identify solution P. (1 mark)

Starch solution;

(iv) put 2cm3 of solution Z into a clean test tube labelled C. Add equal volume of Benedicts solution. Heat to boil. (1 mark)

Blue colour of Benedict's solution persist;

(v) Open the visking tubing provided. Pour solution P into the visking tubing and add 1cm3 of the solution R. Tie the visking tubing and ensure there is no leakage. Pour solution Z into a clean beaker till it is half full. Immerse visking tube in the solution Z in the beaker. Allow it to stand for 30 minutes. After 30 minutes, take 2cm3 of solution Z from the beaker into a clean test tube labelled D. Add equal amount of Benedict's solution. Heat to boil. Record your observation. (1 mark)

Colour changes from Blue-green- yellow- orange;

(vi)Account for the observation made in (v) above.

(3 marks)

Starch is hydrolysed into maltose by enzyme diastase; maltose molecules are small enough to diffuse through the small pores of the visking tubing; maltose reacted with Benedict's solution producing an orange colour;

(b) (i)Pour 2 cm3 of solution Q into a clean test tube. Observe and record the color of solution Q. (1 mark)

White/turbid/ cloudy;

(ii)Add 1 cm3 of sodium hydroxide into test tube containing solution Q. Record your observation. (1 mark)

Solution Q clears/ white colour fades off;

(iii)Explain the results observed in (b)(ii) above.

(2 marks)

Sodium Hydroxide breaks down the protein molecules into peptides; peptides form a clear solution;

iv). what is the identity of solution **R?**

(1 mark)

Enzyme/diastase

v) State **one** factor that can affect the process demonstrated in 3a (v) above (1 mark) *Increase in temperature*