Algebra II Curriculum Map ## **Algebra 2 Common Assessments** | Course: Algebra II | Unit Title / Timeframe: 1- Number Systems / Review /Equations and Inequalities- 6 weeks | |---|---| | Enduring Understandings | Properties of the real number system may or may not hold in other mathematical systems. There are many ways to represent a number. Algebraic expressions and equations generalize relationships from specific cases. | | Essential Questions | What does it mean to be "symbolically fluent?" How can verbal, numerical, graphical and analytical representations be used to analyze and solve problems. How do we analyze and understand patterns, relations and functions? | | Common Core/Massachusetts
Standards / AP Standards | Number Systems review 8-NS, N-CN Solve linear equations/inequalities (simple and compound) review A- REI.1 Solving fractional equations and rational equations (linear) using clearing method A-REI Solving literal equations to highlight a quantity of interest A-CED.4 | | Learning Targets | | | Unit Checklist | Linear Inequalities Compound "AND" & "OR"-flipping signs, open/closed circles, etc. Graphing on a number line Absolute Value (GOLA) Two-Variables Inequalities (graphing and shading on a coordinate plane) Absolute Value Solving Equations-splitting up and doing 2 checks Solving Absolute Value Inequalities (GOLA) Using the graphing calculator to check if you can | | | Writing Equations Using point-slope or slope-intercept form Utilizing a graph or given information Parallel and Perpendicular Lines Solving Equations 1 variable equations Special solution sets Proper solution checks Isolating a variable in a 2-variable equation Literal equations with multiple variables Graphing Linear Equations 3 forms of a line Using slope, intercepts, or a table of values Solving an equation graphically (with the calculator) | |--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Use Rule of Four sheets with graphing calculator* | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | Major Resources | Text: Big Ideas Math Algebra 1 Chapters 1-4 Resource Book: McDougal Littell Algebra 2 Chapter 1 | | Course: Algebra II | Unit Title/Timeframe: 2 - Functions and their graphs - 6 weeks | |---|---| | Enduring Understandings | Change is fundamental to understanding functions. | | Essential Questions | How does output change as input changes? How can change be described algebraically? | | Common Core/Massachusetts
Standards / AP Standards | Understand the concept of a function and function notation including domain and range F-IF.1, F-IF.2 Interpret functions that arise in terms of the context. F-IF 4,5 Solve and graph absolute value equations and inequalities A - REI 10-12 Calculate and interpret the average rate of change of a function. Estimate the rate of change of a graph F-IF.6 Graph linear functions using both standard and slope-intercept form F-IF 7 Identify types of correlation and find lines of best fit S-ID 6 a,b,c,7,8,9 Graph linear inequalities in two variables, piecewise functions, including step functions F-IF 7 | | Learning Targets | Identify parent functions and transformations. Describe transformations of parent functions. Model with linear functions. | | Unit Checklist | General Function Vocabulary Using a graph to answer questions about a function What is a function? One-to-one? Increasing vs Decreasing Function Notation Maximums, Minimums, Intercepts Domain and Range Finding the domain and range from a graph Finding the domain (only) from an equation Transformations | | | Using a given graph to create a new one Using a table or visually moving points Understand f(x) notation and parent functions Absolute Value in 2-D Graphing absolute value functions Finding an equation given a graph or points Knowing what "a", "h", and "k" do Piecewise Functions Evaluating a piecewise function and finding an ordered pair Writing the equation given a graph Word problems | |--|---| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Visual Representation: Students will manually graph and use the graphing calculator to display relationships and find domain and range of functions. TI Use calculator to find linear regressions Forensic Case 1 TI-84 Representational Graphs graphs Louisiana Unit 1 Activity 7 Translating functions Louisiana Unit 1 Activity 10 Greatest Integer Discovery Worksheet DESE AMDM Unit V.C.8 Hurricanes and Shipping Costs V.C.9 Commute Home Activity 2.7 -graphing piecewise functions page 121 TI | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 1.1-1.3 Resource Book: McDougal Littell Algebra 2 Chapter 2 | | Course: Algebra II | Unit Title/Timeframe 3- Systems of Linear Equations and Inequalities - 6 weeks | |---|---| | Enduring Understandings | Algebraic representations are used to communicate and generalize patterns in mathematics. Changes in quantities can be used to predict outcomes and solve problems. | | Essential Questions | How can expressions and equations be used to represent practical problems symbolically? | | Common Core/Massachusetts
Standards / AP Standards | Solve systems of linear equations in two variables algebraically and graphically A-CED, A-REI.5,6,7, F-IF Solve systems of linear equations in 3 variables algebraically only A-CED, A-REI, F-IF | | Learning Targets | Describe different methods for solving systems of linear equations. Solve systems of linear equations. Solve systems of linear inequalities. | | Unit Checklist | Systems of Equations | | Instructional Strategies* TI = Technology Integration | Directed Notes, Practice Cooperative Learning-Partner Work, | | ID = Interdisciplinary Connections | Visual Representation: Students will manually graph and use the graphing calculator to display relationships. TI | |------------------------------------|--| | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 1.4, Big Ideas Math Algebra 1 Chapter 5 Resource Book: McDougal Littell Algebra 2 Chapter 3 | | Course: Algebra II Honors | Unit Title/Timeframe: 4 - Matrices and Determinants - 3 weeks | |---|---| | Enduring Understandings | Matrices are an alternate way to solve systems of equations. | | Essential Questions | How can multiple representations of information be used to express relationships? How can you use matrices to represent and manipulate data to model real-life situations? | | Common Core/Massachusetts
Standards / AP Standards | Add and subtract matrices N-VM Multiply a matrix by a scalar and multiply two matrices N-VM Evaluate determinants of 2X2 and 3X3 matrices N-VM Use Cramer's rule to solve systems of linear equations A-REI Find inverses of 2X2 matrices, use technology for 3X3 matrices N-VM | | Unit Checklist | Matrix Operations | | | Cramer's Rule Inverses Inverse of a 2x2 by hand Inverse of a 3x3 with a graphing calculator Solving Systems Solving using Inverse Matrices Solving using Cramer's Rule | |--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Use a graphing calculator for verifying inverses and determinants. All 3X3 matrix work to be done using calculator Activity 4.1 Using Matrix Operations p 207 TI | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | Major Resources | Text: McDougal Littell Algebra 2 Chapter 4 Resource Book: McDougal Littell Algebra 2 Chapter 4 | | Course: Algebra II | Unit Title/Timeframe: 5 - Quadratic Functions - 6 weeks | |---------------------------|--| | Enduring Understandings | Algebraic representations are used to communicate and generalize patterns in mathematics Patterns enable us to discover, analyze, describe, extend and formulate concrete understandings of real world phenomena through mathematics. | | Essential Questions | How can expressions and equations be used to represent practical problems symbolically? How can change be described mathematically? | | Common Core/Massachusetts | Introduce vertex, standard and intercept forms of quadratic functions F-IF | | Standards / AP Standards | Graph quadratic equations F-IF Solve quadratic equations using: factoring, square roots, completing the square, quadratic formula and graphing calculator A-REI, N-CN Write a quadratic equation given characteristics of their graphs, include systems of 3 equations in 3 unknowns A-CED Model real life problems using quadratic equations, include applications of vertex and zeros Modeling Perform arithmetic operations with complex numbers N-CN Factoring over complex numbers A.SS.E.2 | |--------------------------|---| | Learning Targets | Describe transformations of quadratic functions. Identify characteristics of quadratic functions. Write equations of parabolas. Model with quadratic functions. Perform operations with complex numbers. Solve quadratic equations by completing the square. Describe how to use the quadratic formula. Solve nonlinear systems and quadratic inequalities. Solving efficiently using the 4 methods/Identify proper methods based on different problems. | | Unit Checklist | Graphing Parabolas | | | By Factoring and using the ZPP By the Quadratic Formula By Completing the Square Complex Solution Checks Applications of word problems. | |--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Heavy use of graphing calculator to find vertex, minimum and maximum of parabolas TI Suggested Activity 5-3 Solving Quadratic Equations page 271 using TI 84 Suggested Activity 5-5 Finding Minimums and Maximums page 290 using TI 84 Common Experiences: Quadratic Rule of Four/max, min | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | Major Resources | Text: Big Ideas Math Algebra 2 Chapters 2-3 Resource Book: McDougal Littell Algebra 2 Chapter 5 | | Course: Algebra II | Unit Title/Timeframe: 6- Polynomials Functions - 6 weeks | |-------------------------|---| | Enduring Understandings | Reasoning allows us to make conjectures and to prove conjectures. Patterns enable us to discover, analyze, describe, extend and formulate concrete understandings of real world phenomena through mathematics. | | Essential Questions | Why does a cubic equation have to have at least one real root? How does end behavior change in the polynomial family? | | Common Core/Massachusetts
Standards / AP Standards | Use properties of exponents to simplify expressions 8-EE Discuss end behavior of polynomial functions and graph them A-APR, F-IF Evaluate polynomial functions by substitution Add/subtract/multiply polynomials A-APR Factor by grouping, sum/difference of cubes and "quadratic form" to solve polynomial equations A-APR Divide polynomials using long division, and synthetic division A-APR Relate remainder theorem and factor theorem to long division A-APR Find rational roots of polynomial equations using Possible Rational Root theorem A-APR Analyzing graphs of polynomial functions including real-life models Modeling | |---|---| | Learning Targets | Graph polynomial functions. Add, subtract, multiply, divide, and factor polynomials. Solve polynomial equations. Model with and analyze graphs of polynomial functions. (Intercepts/Multiplicities) | | Unit Checklist | Polynomial Basics Exponent Rules Synthetic Substitution End Behavior Multiplying Polynomials Multiple Distributing with more than 2 terms Raising a binomial to a power Using special patterns and Pascal's Triangle Sum & Product of Roots Factoring/Solving Special Patterns (Sum/Difference of Cubes) Quadratic Form (substituting "u") Grouping Solving with the ZPP and possible quad formula Checking the Fundamental Theorem of Algebra Unfactorable Polynomials Synthetic Division and Polynomial Division | | | Solving/Factoring a polynomial after given one root/factor Listing all possible rational roots using the Rational Root Theorem Graphing Factored form-using multiplicity rules Standard form-finding roots first | | | | |--|--|--|--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, | | | | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | | | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 4 Resource Book: McDougal Littell Algebra 2 Chapter 6 | | | | | Course: Algebra II | Unit Title/Timeframe: 7. Rational Functions - 3 weeks | | | | | |---|--|--|--|--|--| | Enduring Understandings | Patterns enable us to discover, analyze, describe, extend, and formulate concrete understandings of mathematical and real world phenomena. Changes in quantities can be used to predict outcomes and solve problems | | | | | | Essential Questions | Compare and contrast working with numerical fractions and polynomial fractions. | | | | | | Common Core/Massachusetts
Standards / AP Standards | Simplify rational expressions using factoring A-APR, A-SSE Multiply and divide rational expressions A-APR, A-SSE Add and subtract rational expressions A-APR, A-SSE Solving rational expressions A-REI | | | | | | Learning Targets | Add, subtract, multiply, and divide rational expressions. Solve rational equations. Describe how to graph rational functions. | | | | | | Unit Checklist | Multiplying and Dividing Factoring in order to reduce NOT reducing parts of polynomials Taking the reciprocal when dividing Adding and Subtracting Writing the LCD out Each factor the # of times it appears most Simplifying complex fractions (1 of 2 methods) Solving Equations Cross multiplying when possible Multiplying through by the LCD Extraneous solutions Applications to Graphs Checking for extraneous solutions | | | | | | | · Excluded values (open circles and asymptotes) | | | |--|---|--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Technology Activity in text page 561 TI | | | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 7 Resource Book: McDougal Littell Algebra 2 Chapter 9 | | | | Course: Algebra II | Unit Title/Timeframe: 8. Radical Functions - 6 weeks Radical rules for simplifying are analogous to exponent rules Using a function's inverse can help you understand the function | | | | |---|--|--|--|--| | Enduring Understandings | | | | | | Essential Questions | How do I find an inverse function? Will a function always have an inverse that is also a function? What families of functions are inverses of each and how do we use them? | | | | | Common Core/Massachusetts
Standards / AP Standards | Apply properties of integer exponents to fractional exponents. F-IF-8 Show that rational exponent properties are analogous to radical properties and use them to simplify radical expressions. F-IF-8 Write and graph radical functions for both square roots and cube roots. F-IF-7 Define and show examples of inverse functions graphically and algebraically. F-BF-4 Find and prove inverses of a function, restricting the domain where necessary. F-BF-4 | | | | | Learning Targets | Represent roots using rational exponents. Describe the properties of rational exponents and radicals. Solve radical equations and inequalities. Explore inverses of functions | | | | |--|---|--|--|--| | Unit Checklist | Simplifying Expressions Converting exponent/radical forms Using the same exponent rules with fractions Evaluating a number to a fractional power Like radicals and other basic radical properties Simplifying under a radical with index>2 Function Composition Basic operations on functions Performing composition with functions Using radical and exponent rules within composition Graphing Radical Functions Square & cube root differences Transformation rules Solving Equations Squaring/cubing both sides for radical equations Rooting" both sides for power equations NOT distributing an exponent/radical Extraneous solutions | | | | | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Technology Activities | | | | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | | | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 5 Resource Book: McDougal Littell Algebra 2 Chapter 7 | | | | | Course: Algebra II | Unit Title/Timeframe: 9. Exponential Functions - 3 weeks | | | | | |---|---|--|--|--|--| | Enduring Understandings | Exponential growth is different from linear or quadratic growth Exponential functions can be used to model real world phenomena including many applications to finance and compound interest | | | | | | Essential Questions | How can I tell if a function is exponential growth, decay, or neither? What is an asymptote and what it is used to show graphically | | | | | | Common Core/Massachusetts
Standards / AP Standards | Graph exponential growth and decay functions and identifying asymptotes F-IF-8 Identifying growth, decay, etc.from equations and graphs F-IF-8 Model real life problems with exponential functions F-IF-5 Understand that "e" is a constant used for continuous growth and apply to real life problems F-IF-5 Interpret functions including polynomial, rational, logarithmic, exponential, trigonometric (end of year review) F.IF.MA.10 | | | | | | Learning Targets | Determine whether a function represents exponential growth or decay. Simplify exponential expressions. Solve exponential equations. Model exponential functions. | | | | | | Unit Checklist | Growth & Decay Identifying Growth vs. Decay depending on the "b" value Using a negative "a" value | | | | | | | Graphing and using an asymptote Identifying Linear, Quadratic, and Exponential models Word Problems "Initial Value" and "Growth Factor" Writing exponential equations from a word problem Using/understanding the number "e" Calculating an amount after a given time | | | |--|--|--|--| | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Technology | | | | Assessment | List of Assessments *Additionally the use of IXL & Kuta Software | | | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 6 Resource Book: McDougal Littell Algebra 2 Chapter 8 | | | | Course: Algebra II | Unit Title/Timeframe: 10. Probability- 3 weeks (extension if time permits) | | | | |-------------------------|---|--|--|--| | Enduring Understandings | Sample space is a list of all possible outcomes of an event An event and its complement create a probability of 1 Events that are mutually exclusive have no effect on each other Events that are dependent on a previous outcome are termed conditional probabilities | | | | | Essential Questions | How are our mathematical calculations different when dealing with dependent vs. independent events? How can I use conditional probability to find out the likelihood of outcomes of events? | | | | | | How can I use the counting principle to calculate a sample space? | | | | |--|---|--|--|--| | Common Core/Massachusetts
Standards / AP Standards | Describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other events S-CP-1 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.S-CP-2 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B. S-CP-3 Construct and interpret two-way frequency tables of data S-CP-4 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations S-CP-5 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model S-CP-6 Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model. S-CP-7 | | | | | Learning Targets | Define theoretical and experimental probability. Use two-way tables to find probabilities. Compare independent and dependent events. Interpret and construct probability and binomial distributions. | | | | | Instructional Strategies* TI = Technology Integration ID = Interdisciplinary Connections | Directed Notes, Practice Cooperative Learning-Partner Work, Technology | | | | | | List of Assessments *Additionally the use of IXL & Kuta Software | | | | | Major Resources | Text: Big Ideas Math Algebra 2 Chapter 10 Resource Book: McDougal Littell Algebra 1 Chapter 2.8 | | | |