
1-click upgrade module
Notes taken during rework

These notes have been taken during the refacto on the autoupgrade module. They are written
for the latest version, but are also mostly compatible with the previous ones.

> Entrypoints
The 1-click upgrade wants to be a module AND be as independent as possible. Which means
its content can be reached from several way:

autoupgrade.php
Every module developer will recognize its content. This file is used to manage the module part
of the project: installation, uninstallation, then automatic redirection to the next file.

AdminSelfUpgrade.php
This controller uses the AdminController features from PrestaShop. It allows the upgrade
configuration to be displayed in the back office. The merchant will see the configuration options.

It was used to handle everything, displaying answers, handle and dispatching requests, making
coffee etc. In the latest version, we aim to limit its responsibilities, which should be displaying
the configuration page.

ajax-upgradetab.php
This file is called from ajax requests. This is the only responsible of the initialization and
upgrade / rollback steps. This file is not a PrestaShop controller for a simple but important
reason, we do not want to rely on the core during an upgrade or a rollback, this would increase
the risk of crashes.

cli-upgrade.php
This is the equivalent of ajax-upgradetab.php file for CLI calls. It will instantiate some specific
features to the CLI, like a logger displaying informations on the fly. This entrypoint is also useful
for testing, or for a user who does not want to use the web version.

> What version to use
The objective is to have a single module version to handle these PrestaShop upgrades:

●​ 1.6 >> to >> 1.6 / 1.7
●​ 1.7 >> to >> 1.7

The other versions are not part of our support plan anymore. We recommend to use the
previous versions of the module available on the PrestaShop marketplace.

> Technical choices

Compatibility with PrestaShop 1.6 & 1.7
We took the versions supported at the moment we wrote this documentation (and the next
module versions). We want to help the highest number of merchants to upgrade to the latest
major version.

Twig as template engine
Even if Smarty is still provided by the core, we decided to use an independant engine template.

●​ Replacing the core template engine won’t break the module later
●​ We limit the dependencies between the core / module

Core classes avoided
Because the upgrade will modify classes you might need, we must avoid relying on them.
This is what we would do in a perfect world, but here we can’t! Mainly because some features
absolutely need the core. What we tried to do is avoiding when possible the core, mainly until
the UpgradeDb step, in order to avoid some undefined methods coming from the new files.

The best compromise was to separate requests (even the CLI one) in several steps. By doing
so, we can start the new fresh core with its updated classes.
When we published the beta version of the module making an upgrade 1.6 to 1.7, the class
Upgrade was introduced to the core (~ 1.7.1.0)

Interface still unfriendly
The perimeter of the new module version only concerned its backend. The first objective was to
make the PHP code easier to understand and improve the robustness of the upgrade process
where possible. The interface will be updated in another version.

​ ​ ​ ​

New module structure
By looking at the content in the next module version, you will find a lot of files in the “classes”
folder. That was necessary in order to remove all the stuff from AdminSelfUpgrade, the class
previously responsible of everything.
We grouped our files in main topics:

●​ All classes responsible of the display (Twig related)
●​ Classes used for the module to work
●​ Classes interacting with PrestaShop core
●​ Tasks (Can be considered as controllers for upgrade, rollback etc.)

​ ​ ​ ​

New features
Although the last major version of the module was supposed to be a refacto (meaning we don’t
change the module behavior, only its content), we added some cool features at the same time to
improve the support.

●​ New loggers: Reporting is now using the PSR-7, allowing incomers in ​ the module
code to recognize some common code in PHP. New loggers ​ have been created:

○​ LegacyLogger: The existing logger still stores its content in lists ​ ​ before
being displayed in a sigle row, and at the same time in a ​ ​ log file. By
doing this, we still can get details on what happened ​ ​ if the script
execution stopped prematurerly.

○​ StreamLogger: New logger, used in CLI mode. We do not need to use ​ ​
memory to store the logs, we can display them directly on the ​ ​
terminal.

●​ Error handler: Our main issue was the support. In case of HTTP error ​ 500, which
means an internal error occured, the module was unable to ​ display anything to

the user. On our support platform, he was ​ requested to open his PHP logs in order to
get error details, and ​ this step was difficult for non-tech people. Now, the error is ​
displayed directly on the screen.

> Available steps
All these steps are called from the entrypoint ajax-upgradetab.php.

Upgrade

The following steps will be executed during the upgrade:

●​ UpgradeNow: Start of the whole process. The next step will be chosen depending on the
configuration.

●​ Download: Download the proper archive depending on the selected channel
●​ Unzip: Unzip the downloaded archive, what else did you expect?
●​ RemoveSamples: The changes made by the merchant on his shop, like images, must

not be deleted! This step removes the example files from the downloaded archive.
●​ BackupFiles: In case the upgrade does not went well, or if the merchant wants to

rollback later, we save the files of the shop. Note this can be filtered, for example if a file
is too big.

●​ BackupDb: Like the files, we save the current database structure and content, in case a
rollback is needed.

●​ UpgradeFiles: Now the current content is saved, we can alter the shop content. This step
will run several time. The first call will initialize the files list, then the next ones will copy a
part of this list.

●​ UpgradeDb: This step does much more than you can think. Its initial purpose is to run all
the upgrade SQL files available in the install folder. Then, it will run some additional
steps, such as theme enabling, cache deletion, language update...

●​ UpgradeModules: With the list downloaded from the PrestaShop Marketplace in the ​
first steps, we now request updated module zips and update the ​ installed ones.

●​ CleanDatabase: This step run some SQL queries in order to remove obsolete or wrong ​
data. Note the concerned data is not coming from the upgrade itself, ​ but from the
use of PrestaShop.

●​ UpgradeComplete: Hey, who would believe it? The upgrade completed and we want you
to ​ know it. This step will display a success message and will end the ​process.

Rollback
●​ Rollback: This is the entrypoint of the rollback process. It will ​ find all the available

backups regarding the given parameters ​ (basically, the restore backup must be sent
from the backup name you ​ generated). If a backup matches the given parameters, the
process ​ starts the file restoration.

●​ NoRollbackFound: A classic task used to display a message saying no ​ backup
matches the given parameters, and terminates the process.

●​ RollbackFiles: Like the step UpgradeFiles, this step copies the ​ files from the archive
and remove the files absent from the original ​ environment.

●​ RollbackDb: This task reads and runs the files generated by ​ BackupDb.
●​ RollbackComplete: The upgrade may have failed or you were not ​ completely satisfied

by the new version, but we brought everything ​ back. You can reuse the shop as
before.

Other / Misc
These steps don’t follow any process and are independant between each others.

●​ CheckFilesVersion: This task is responsible to detect all local ​ files has been
modified by the merchant / developer. This is an ​ important pre-requesite which warn
about the potential loss of ​ changes.

●​ Error: This task can be called from any other one, and will display ​a specific message
saying the upgrade / restore process failed. In ​ case of upgrade, a restore will be
suggested.

●​ UpdateConfig: This task will store in a configuration file the different options selected in
the web version of the module.

> External resources

Channels details
Note: there are two versions! This was a temporary solution for a specific 1.7 version of the
module, but today there is no information in the main resource of PrestaShop 1.7.x.x. Another
must be used.

> Local temporary assets
In order to work properly, the 1-click upgrade module needs to write some files to your
filesystem server. These files are stored in the following folders, all available in the <admin
folder>/autoupgrade path.

Folders

●​ backup: Folder in which the current state of the shop will be saved ​ before
upgrade. It contains files archive, DB structure & data.

●​ Download: Destination folder of the downloaded PrestaShop archive, ​ before unzip.
●​ Latest: Working directory of the autoupgrade. This is where the ​ “lastest” version of

PrestaShop will be unziped, before copy.
●​ Tmp: Temporary resources not specifically used for upgrade. For ​ instance, logs will be

stored in that folder.

	1-click upgrade module
	> Entrypoints
	autoupgrade.php
	AdminSelfUpgrade.php
	ajax-upgradetab.php
	cli-upgrade.php

	> What version to use
	> Technical choices
	Compatibility with PrestaShop 1.6 & 1.7
	Twig as template engine
	Core classes avoided
	Interface still unfriendly
	New module structure
	New features

	> Available steps
	Upgrade
	Rollback
	Other / Misc

	> External resources
	Channels details

	> Local temporary assets

