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Abstract 

Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow myeloid stem cells 
that poses substantial population burden, especially for pediatric populations. AML is a highly 
heterogeneous cancer. Prior literature has characterized dozens of molecular subtypes based 
primarily on cytogenetics, sequence variants, structural variants, and aberrant gene expression. 
This body of prior work represents substantial time, energy, and resources, and we were 
interested in the utility of automated feature selection methods for molecular characterization of 
AML. We used an ensemble machine learning approach, wherein we evaluated top important 
features across models fitted using AML RNA-seq data and a variety of different algorithm 
types. We assessed consensus of feature selection results across fitted models, and whether 
prior literature validates these genes’ functional roles in AML development, risk, and 
progression. 
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Introduction 
Leukemia is a cancer of the blood arising in white blood cells of the bone marrow. It poses a 
substantial population burden as the most common pediatric cancer (1,2). Leukemia can show 
aggressive progression if untreated at an early stage, and depending on whether it manifests as 
acute or chronic.  
 
Acute Myelogenous Leukemia (AML) is a type of leukemia impacting the myeloblast stem cells. 
It arises at a current rate of approximately 20,000 cases per year with 27.4% 5-year survival 2. 
AML shows high molecular heterogeneity, with several clinically relevant subtypes, including the  
Acute promyelocytic leukemia (APL) subtype caused by a gene fusion event, and perhaps 
dozens of subtypes defined by various factors ranging from cell differentiation state to cytogenic 
and sequencing assays (2–4). Pediatric AML is characterized at a molecular level by rare somatic 
mutations, absence of common adult AML mutations, and relatively frequent structural variants 
(5). These findings indicate the importance of age-based targeted therapies and the utility of 
molecular assays in enabling a better understanding of clinically relevant molecular variation 
underlying AML cases. 
  
Here, we apply several machine learning approaches for feature selection of RNA-seq data 
from both pediatric and adult AML cases. This investigation aimed to help illuminate gene 
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expression-based heterogeneity underlying AML cases, as well as age-related and -unrelated 
dysregulation patterns. We used clinical and assay data from pediatric cancer patients from the 
Therapeutically Applicable Research To Generate Effective Treatments (TARGET) initiative 
(https://ocg.cancer.gov/programs/target/). 
 
In exploring the potential for machine learning to aid in molecular characterization of pediatric 
AML, we were interested in demonstrating the potential and efficacy of automated feature 
selection. Extensive prior analyses have identified and characterized molecular subtypes in 
AML, but these efforts require considerable time and expertise. In the era of big data science, 
we were interested in the potential for machine learning to reduce barriers to insight of cancer 
molecular subtypes. 

Methods 
We accessed TARGET pediatric cancer assay and clinical data, and TCGA adult cancer case 
data, through the project website and Genomic Data Commons (https://gdc.cancer.gov/) on 
February 4th, 2018. Information on patient enrollment, assay collection, and other related 
protocols are available in the online methods at the consortia websites (6; 
https://cancergenome.nih.gov/). 
 

 
 
The TARGET pediatric AML cohort consists of samples from N = 156 patients, with tissues 
including primary peripheral blood (N = 26 samples), recurrent bone marrow samples (40 
samples), primary bone marrow (119 samples), and recurrent peripheral blood (2 samples). For 

https://ocg.cancer.gov/programs/target/
https://gdc.cancer.gov/
https://ocg.cancer.gov/programs/target/target-methods
https://cancergenome.nih.gov/
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the following analyses, we combined primary blood and bone tissues from 145 patients. 
TARGET clinical data includes a risk group variable that reflects patient risk of disease 
progression, based on an aggregate of histological and molecular evidence. We recoded risk 
group to be Low (0) or Not-low (1), where the latter category included standard and high 
risk group samples. We excluded samples of unknown risk. Primary pediatric AML samples 
were then randomly divided in training and validation subsets at a 1:1 sample size ratio, 
preserving frequencies of classifier categories across the data subsets.  
 
The first iteration of feature selection involved choosing features based on variance. For both 
the Low-Risk and Not-Low-Risk group, 1000 features with the most variance were 
selected from both groups and used to fit and test a Random Forest, XGBoost, and 
Gradient Boosting model. The step was repeated selecting features with the least variance. 
Both methods of feature selection outperformed randomly choosing 2000 features.  
 
The second iteration of modeling involved using all possible features. A logistic regression with 
Lasso regularization was fit on all features, reducing the number of important features to 3212.  
A Random Forest and XGBoost model were also fit and tested on all possible features, resulting 
in 1147 and 332 important features, respectively. The intersection of these features was then 
analyzed. 
 
A second logistic regression with Lasso regularization was fit until complete convergence, 
resulting in a reduction to 174 features. The intersection of these 174 features and the 332 
features of the XBoost model were then analyzed. 
 
Logistic regressions were also performed using the R Bioconductor packages MLseq and 
DEseq2. Data were randomly subsetted with 30% used for testing and 70% used for model 
training. Features were selected as either low risk group, or high risk group. The models 
trained and fitted in this manner were VoomNSC, voomDLDA, PLDA, PLDA2, and nblda.  
 

Algorithm Type Resource Name 

Support vector machines (SVM) e1071 

Random Forest, Gradient Boosting, XGBoost XGboost; sklearn 

Lasso sklearn 

glmboost mlr 

voomNSC, voomDLDA, PLDA, PLDA2, 
nblda, deepboost, blackboost, logitboost 

MLseq;DEseq2 
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Moreover we are badasses and therefore have come up with a novel ensembl clustering 
algorithm that is the best thing ever.   
We used a variety of mSVM with RNA sequencuing dataethods for feature selection, 
including… 
(show methods table) 
Experiment Design Table 
Deliveables 
We obtained RNA-seq gene expression data, and preprocessed with TMM 
We then identified top differentially expressed genes between low and not-low risk 
groups 
We trained and validated N algorithms of various classes, including... 
 
Any file with more than 2 sample IDs associated with it was filtered out.  
 
 

Implementation 
This section describes how the tool works and relevant technical details for implementation. 
We cleaned lots of data and then did machine learning.   
We compiled TARGET data as R objects 
We logged our analysis steps and code in Jupyter and R notebooks 
 

Operation 
This section should include the minimal system requirements needed to run the software and an 
overview of the workflow 
 
Run it on the cloud 
Run it on various linux iterations 

Results 
To reduce noise and false positive rate, we opted to exclude genes with low expression contrast 
between the classifier groups for patient risk. With this pre-filter, we identified N = 1,998 (9.33% 
retained) differentially expressed genes (DEGs) showing substantial mean differences between 
risk groups (t-test adj. p-value < 0.05). This increased the mean of expression differences 
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(means) from 0.50 to 1.71 (median increase from 0.32 to 1.51). Mean of variance differences 
also increased from 0.76 to 2.19 (median increase from 0.31 to 2.19). 
 
We next fitted models to predict AML risk group using the filtered expression data. In total we 
used N algorithms. To determine whether a model showed acceptable predictive performance, 
we compared sensitivity, specificity, recall, false positive rate, loss, accuracy, and various other 
measures.   
 

Gene ID Gene Name AML Context Algorithms Selected 

ENS#### (gene 
ensembl ID) 

GeneA (common 
name) 

(relevant lit if 
applicable) 

(which algos) 

... ... ... … 

    

    

 
 

 
Figure X: Three models were trained and tested on all possible features. The Lasso, Random 
Forest, and XGBoost model deemed 3212, 1147 and 332 features important, respectively. 
Eleven features were deemed important by all three. 
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Figure X: The Lasso model was refit until convergence. The second Lasso model now deemed 
174 model important. The XGBoost and Lasso model shared 15 features. Of those 15, six were 
in the original 11 above.  
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 Condition Positive 
34 

Condition Negative 
32 

Predicted Positive 
46 

True positive 
31 

False positive 
15 

Predicted Negative 
20 

False Negative 
3 

True Negative 
17 

 
TPR = 31/34 = 91% 
Precision = 31/46 = 67% 
Specificity = 17/32 = 53% 
False Discovery Rate = 32% 
 
Logistic Regression with High/Standard Risk Patients 

The TARGET AML RNA-seq dataset was split into training set (N=96) and test set 
(N=49) by randomly sampling the patient identifiers.  High and Standard risk  AML patients 
(N=55) defined by classic cytogenetic and molecular mutations were compared to low-risk AML 
(N=38)  in the training dataset using differential expression analysis. Patients without risk 
classification were removed prior to analysis. There were 1,998 differentially expressed genes 
(absolute log2 FC > 1, adjusted p-value < 0.05), which then employed in logistic regression with 
the LASSO feature selection algorithm (Fig2 A,B). This resulted in 13 genes which were found 
to be associated with high/standard risk, including HOXA9, SLTRK5 and ITGB3 (Table 2). 
HOXA9 has been implicated in MLL (KMT2A)-rearranged AMLs and MLL-HOXA9 fusion has 
been shown to induce leukemogenesis in xenograph and mouse models (CITATION). However, 
the identification of SLTRK5 and ITGB3 provide  powerful  opportunities for targeted therapy as 
both are highly and aberrantly expressed on the cell-surface, allowing potential for antibody 
targeting or even CAR-T cell therapy technology. SLTRK5 has been shown to be aberrantly 
expressed in nearly 80% of AML and coincides with high/standard risk clinical features, allowing 
one the potential  to improve outcomes for poor prognosis AML.  The model performed well in 
predicting the risk classification of the test set with 6% error rate, and XX true positive rate and 
accuracy/specificity, suggesting these genes can also be used for the prediction of risk quickly 
using only diagnostic biological specimens, but will need to be further examined in a validation 
dataset.  
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Table 2. Genes associated with High/Standard molecular risk-groups.  
 ​  ​  ​  

Gene_ID Gene name Coefficient 

ENSG00000078399 HOXA9 0.2184967372 

ENSG00000101333 PLCB4 0.0931645222 

ENSG00000188626 GOLGA8M 0.0868262987 

ENSG00000259207 ITGB3 0.0757604883 

ENSG00000165300 SLITRK5 0.0546755323 

ENSG00000198722 UNC13B 0.0280847887 

ENSG00000164659 KIAA1324L 0.0002750672 

ENSG00000226321 CROCC2 -0.0257766559 

ENSG00000267453 LINC01835 -0.0365784818 

ENSG00000132514 CLEC10A -0.0430241193 

ENSG00000132975 GPR12 -0.0742916453 

ENSG00000250696 AC111000.4 -0.085920489 

ENSG00000260182 AC120498.2 -0.0956569772 
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Conclusion and next steps 
This section should include a brief discussion of allowances made (if any) for controlling bias or 
unwanted sources of variability, and the limitations of any novel datasets. Also include any next 
steps for future development (whether your group actually plans to do this or these steps are 
just included a guidance for potential future development). 
 
Our results indicate the potential for automation of feature selection to characterize subtypes of 
cancers showing molecular heterogeneity. Owing to these promising findings, we propose to 
extend this analysis to a pan-cancer experiment comparing comparable cancers from pediatric 
and adult samples in the TARGET and TCGA consortia, respectively. We were interested in 
comparing our aggregated results with various algorithms to automated meta machine learning 
packages.  
 
For this investigation we focused primarily on RNA-seq data, but the data handling workflow 
described could be readily extended to numerous other assay types. Complementary data such 
as copy number variation could be further leveraged for quality control improvements to our 
analyses of expression data. This integration of additional data types would further increase 
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confidence in our results with the potential to further illuminate the functional roles and dynamics 
that explain gene dysregulation that is predictive for AML risk group. 

Data and software availability 
Code, including data tables, R and Python scripts and notebooks, is available at the GitHub 
repository (GitHub - NCBI-Hackathons/ConsensusML: Machine Learning to Detect Cancer 
Biomarkers from RNAseq Data). All data, code and analysis is provided under the MIT license. 

Suggested Reviewers 
 

1.​ Hamid Bolouri 
2.​ Timothy Triche Jr. 
3.​ Soheil meshinchi 
4.​ Sean Davis 

 

Author contributions 
Sean Maden: Conceptualization, Methodology, Investigation, Visualization, Writing - Original 
Draft Preparation 
 
David Lee: Methods, Results 

Competing interests 
No competing interests were disclosed. 

Grant information 
NCBI/NIH hackathons grant money 
Other grant contributions 

https://github.com/NCBI-Hackathons/RNAseq_Cancer_Biomarkers
https://github.com/NCBI-Hackathons/RNAseq_Cancer_Biomarkers


= 

Acknowledgements 

The authors would like to acknowledge the support of Amazon Web Services for provision of 
compute time and resources, the national center for biotechnology information (NCBI) and NCBI 
hackathons program, and Fred Hutch for hosting the hackathon where much of this work was 
produced.  

References 
Instructions on using the F1000R Google docs plug in for reference management: 
http://f1000.com/work/faq/google-docs-add-on/1 
 
Instructions on using the F1000R Word plug in for reference management: 
http://f1000.com/work/faq/word-plugin  
 
1.     ​ Steliarova-Foucher, E. et al. International incidence of childhood cancer, 2001-10: a 
population-based registry study. Lancet Oncol. 18, 719–731 (2017). 
2.     ​ Acute Myeloid Leukemia - Cancer Stat Facts. SEER Available at: 
https://seer.cancer.gov/statfacts/html/amyl.html. (Accessed: 5th February 2019) 
3.     ​ Yi, G. et al. Chromatin-Based Classification of Genetically Heterogeneous AMLs into 
Two Distinct Subtypes with Diverse Stemness Phenotypes. Cell Rep. 26, 1059-1069.e6 (2019). 
4.     ​ Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 
562, 526 (2018). 
5.     ​ Bolouri, H. et al. The molecular landscape of pediatric acute myeloid leukemia reveals 
recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24, 103–112 
(2018). 
6.     ​ Cancer Genome Atlas Research Network et al. Genomic and epigenomic landscapes of 
adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013). 
 

Figures and Tables 
Figure 1. Workflow and methods for discovery of AML biomarkers.  
 
Table 1. Machine learning algorithms applied for biomarker discovery. 
 
Table 2. Genes associated with High/Standard molecular risk-groups.  
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Figure 2. Scatter plots of gene expression contrasts in test (top) and training (bottom) AML data 
subsets. X-axis is difference in expression means between dichotomized risk groups, y-axis is 
difference in expression variances between these groups. Green dots are differentially 
expressed genes (DEGs, N = 1,998 loci), red circles are all genes (N = 21,407 loci). 
 
Figure X: Three models were trained and tested on all possible features. The Lasso, Random 
Forest, and XGBoost model deemed 3212, 1147 and 332 features important, respectively. 
Eleven features were deemed important by all three. 
 
Figure X: The Lasso model was refit until convergence. The second Lasso model now deemed 
174 model important. The XGBoost and Lasso model shared 15 features. Of those 15, six were 
in the original 11 above.  
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