
PUBLIC

Implement Cache-Control:
stale-while-revalidate

Adam Rice <ricea@chromium.org>

Objective
Implement the Cache-Control stale-while-revalidate directive to permit servers to reduce latency.

Background
See “PRD - stale-while-revalidate” for detailed background and justification.

Proposed Design
The feature will be implemented in several stages to minimise risk.

Stage 1: Resource-Freshness header
A server which supplies the Cache-Control: stale-while-revalidate directive with a non-zero
value will receive a Resource-Freshness header on future requests for the same resource (as
long as it remains in cache). This will only be sent with revalidation requests, ie. requests that
include an If-Modified-Since or If-None-Match header.

The Resource-Freshness header contains three pieces of information:

1.​ max-age: If the cached response contains a Cache-Control: max-age directive, this is
that value. Otherwise it is the max-age that Chrome calculated based on the value of
other headers, in seconds.

2.​ stale-while-revalidate: The stale-while-revalidate directive value from the original
response (seconds).

3.​ age: How old Chrome thinks the resource is, in seconds.

This will permit web services to experiment with stale-while-revalidate and calculate optimal
values for max-age and stale-while-revalidate directives.

The extra header will be added to the request in
HttpCache::Transaction::ConditionalizeRequest(). The age and max-age have already
been calculated once to determine whether the cached entity is fresh, but currently their are not
cached anywhere. For efficiency it might be a good idea to cache these values instead of
recalculating them to send the header.

https://docs.google.com/a/chromium.org/document/d/1izgyCOcRtz5Kc0rFtZ68p5mj3E__Uvgpf-5cJJHi7jE/edit

PUBLIC

Negative values of the stale-while-revalidate directive will be ignored.

Stage 1.5: Resource-Freshness header for conditional requests from
Blink
If a resource is in the Blink cache, then Blink will issue a conditional request for it. These are
sent to the origin server unchanged. They will also need a Resource-Freshness header added.

Stage 2: Experimental implementation
Requirements

●​ For every request which utilises the cache, check whether the stale-while-revalidate
directive is present and applicable. “Applicable” just means that max-age +
stale-while-revalidate < age. If applicable, the cached response should be
returned, and an asynchronous revalidation should be triggered.

●​ Currently no specific opt-out for this behaviour is envisioned. Normal mechanisms to
bypass the cache or force revalidation will prevent stale content from being used.

●​ To avoid confusion about what are the “real” response headers, the response as shown
in devtools or XMLHTTPRequest.getAllResponseHeaders() will not have a Warning:
or Age: header (unless an upstream proxy or server actually provided one).

●​ Request modifications such as URL rewrites or request header additions must be
applied exactly once. In practice this means that only the original request will be passed
through extension hooks; the copy of the request that is issued asynchronously will not.

●​ The asynchronous revalidation request must be issued at the IDLE priority.
●​ Load flags VALIDATE_CACHE, BYPASS_CACHE, PREFERRING_CACHE, ONLY_FROM_CACHE

and DISABLE_CACHE should disable the stale-while-revalidate logic.
●​ The originator of the asynchronous revalidation request is the cache, not the renderer.

The renderer is assumed to have sufficient privileges to make the request, since it
reached the browser cache, however the cache may lack access to credentials needed
to perform the request, in particular SSL client certificates. In other words, the cache
won’t fetch anything that the renderer would not have fetched anyway, but it might fail to
fetch resources that the renderer would have fetched successfully.

●​ The asynchronous revalidation request will not pop up UI in response to requests for
authentication.

●​ If the request fails in a way that would require user interaction to resolve, the cached
entry should be marked as requiring revalidation on the next load so that the necessary
user interaction can be performed. This should be rare. We could add a UMA histogram
to track these cases. The cases I intend to handle in this way are

○​ SSL client certificate required.
○​ SSL certificate error manual override required.

PUBLIC

●​ The asynchronous revalidation request should cache redirects, but not follow them. This
is because extension hooks don’t run, so we don’t know whether any redirect would be
blocked by an extension.

●​ The logic to determine whether to use stale-while-revalidate and issue an asynchronous
request will be run on every request, so it should be lightweight.

●​ Only GET and HEAD requests are in scope. POST requests are problematic because
the UploadDataStream object will not outlive the original URLRequest and we have no
way to copy it.

●​ We don’t want the asynchronous revalidation request to consume bandwidth that would
otherwise have been used for a synchronous request required to render the page. It is
probably impossible to do this perfectly, so we should make a best effort.

●​ We should avoid causing additional radio wakeups on mobile. We should also attempt to
minimise the extra time that the radio is kept awake to service the asynchronous
request.

●​ Chrome’s cache does not cache the following headers:
○​ Set-Cookie and Set-Cookie2. These headers are parsed by URLRequestHttpJob,

and so attempts to set cookies on asynchronous responses will fail.
○​ Strict-Transport-Security and Public-Key-Pins. These are also processed by

URLRequestHttpJob, and so will be lost if returned in an asynchronous response.
Normally these would already have been seen when first connecting to the host,
but it is conceivable that if they were added when all resources used from the
host were already cached; as long as those resources were only fetched
asynchronously the security settings would never get applied.

○​ WWW-Authenticate and Proxy-Authenticate. Losing these is not a big problem;
403 and 407 responses are not usually cacheable anyway, and even if it was the
authentication would have to be completed synchronously.

○​ Connection-level headers. These are only relevant to the lower levels anyway, so
losing them is not a problem.

●​ The feature should be disabled by default, behind a flag, to avoid wide adoption while we
experiment with it. Assuming the experiment is a success, an implementation that
supports cookies and the Strict-Transport-Security and Public-Key-Pins headers will be
needed.

●​ Apart from the time it is issued, and the lower priority, the asynchronous revalidation
request should be identical to what the synchronous request would have been. In
particular, it should not require additional server resources to process as this would
discourage server operators from using the feature.

PUBLIC

Timeline

Because of the caching semantics of HTTP, the “age” of a resource is not necessarily 0 when
we receive it from the network, however this does not significantly change the semantics.

Additional requests for the same resource will have to wait for the cache lock in order to
proceed. In effect this means that they will wait for the asynchronous revalidation to complete.

There is a small time window between the synchronous request being served the stale resource
from the cache, and the asynchronous revalidation being created. The cache will track what

PUBLIC

resources have asynchronous validations in progress and ignore a second attempt to create an
asynchronous revalidation to a resource which already has one in progress.

Implementation

●​ Add a field trial “StaleWhileRevalidate” to experiment with turning the feature on for a
fraction of users. The feature will be disabled by default.

●​ Add a flag --enable-stale-while-revalidate to control the feature from the
command-line.

●​ Add the feature to about:flags so that developers can experiment with it easily.
●​ Modify HttpResponseHeaders::RequiresValidation() to return an enum with one of

the values NONE, ASYNCHRONOUS or SYNCHRONOUS instead of the existing bool return
value. Return ASYNCHRONOUS when age > max-age and age <= max-age +
stale-while-revalidate.

●​ content::AppCacheUpdateJob() also uses the HRH::RequiresValidation() method
but won’t do asynchronous revalidation. Modify it to treat ASYNCHRONOUS and
SYNCHRONOUS the same.

●​ Modify HttpCache::Transaction::RequiresValidation() to return NONE,
ASYNCHRONOUS or SYNCHRONOUS instead of a boolean. Where it currently returns true, it
should return SYNCHRONOUS and where it currently return false it should return NONE. It
will return ASYNCHRONOUS if it called HRH::RequiresValidation() and that was the
value returned.

●​ HC::Transaction::BeginCacheValidation() will be modified to treat ASYNCHRONOUS
the same as NONE when the feature is enabled, except that before doing anything else it
will call TriggerAsyncValidation(). When the feature is disabled, it will behave the
same as SYNCHRONOUS, effectively ignoring stale-while-revalidate (except that the
Resource-Freshness header will still be triggered).

●​ The new method TriggerAsyncValidation() will post a task to the HttpCache object
to call PerformAsyncValidation() on the next iteration of the message loop (the
HC::Transaction object may already have been deleted by then).

●​ HttpCache will have a new method called PerformAsyncValidation() which will
create a new IDLE-priority HC::Transaction, store the new transaction in a map, and
start it running.

●​ If an existing AsyncValidation for the same resource is found, the new one will be
discarded.

●​ HttpCache::AsyncValidation will create a special ProxyHeadersSendCallback
which doesn’t depend on the URLRequest object being alive. This allows asynchronous
revalidations to pass through the bandwidth reduction proxy.

●​ A new nested class, HttpCache::AsyncValidation will handle creating the
transaction and reading back its results.

●​ A new load flag, LOAD_ASYNC_REVALIDATION will be created. This will force
HC::Transaction to perform a synchronous validation. This cannot be done via
existing load flag LOAD_VALIDATE_CACHE because it has the side-effect of adding a
Cache-Control: max-age=0 header to the request.

PUBLIC

●​ Since HC::Transaction already stores its results to the cache,
HttpCache::AsyncValidation can just Read() and discard the response.

●​ A new UMA histogram, HttpCache.AsyncValidationDuration, will record the time
spent requesting stale resources asynchronously.

●​ The HttpCache destructor will delete any asynchronous revalidations that are still in
progress.

●​ It is not safe to re-use the BeforeNetworkStartCallback set by URLRequestHttpJob
because it has a pointer to the HttpJob and the HttpJob is highly likely to be deleted.
This callback is not currently used for anything so at the moment not setting it is
harmless.

Rejected Alternatives

●​ Instead of changing the existing RequiresValidation() method to return an enum,
create a new HttpResponseHeaders::RequiredValidationType() method. This
would avoid the need to change content::AppCacheUpdateJob().

●​ Factoring cache-related code out of HttpResponseHeaders into a dedicated class. The
new class could then cache the values returned by the header lookups, reducing the
number of passes made over the headers. This would take considerably more time and
might be controversial.

●​ Returning a magic error code like ERR_NEED_ASYNC_REVALIDATE back to
URLRequestHttpJob to trigger an asynchronous revalidation. This is attractive because
URLRequestHttpJob has access to the URLRequestContext object, however we still
need to attach the asynchronous job to an object with a longer lifetime (ie. the
HttpCache object). There is a danger that the magic error code could leak out of the
intended scope. Also if we can constrain the logic to HttpCache and
HttpCache::Transaction it permits better encapsulation and reduces the impact of
the change.

●​ Adding a delay before starting the asynchronous revalidation to give more synchronous
requests a chance to run first. For transports which implement prioritisation at the
protocol level (ie. SPDY/HTTP2/QUIC), and competing resources from the same host,
this could only make performance worse. When the competing resources come from a
different origin, or the protocol has no prioritisation (HTTP/1.1), the situation is more
complicated. We might need to wait, but we don’t know how much, and if we wait too
long we will waste battery life.

●​ Sending asynchronous requests back up the stack to content::ResourceScheduler to be
scheduled. This would permit the asynchronous requests to be queued behind
synchronous requests that haven’t been passed to net/ yet. This would probably deliver
the best behaviour that we can get with the current architecture, at an considerable cost
in implementation complexity. We would need to ensure that stale-while-revalidate
behaviour was only used with embedders that were capable.

Code Locations

○​ net/http
○​ chrome/ (flag stuff)

PUBLIC

○​ build/ios (flag stuff)
○​ tools/metrics/histograms/histograms.xml

Stage 3: Initial Evaluation
A field trial on dev users will enable us to measure the perceived latency improvement resulting
from the feature. Based on this, we can decide whether it is worth investing the time to
implement the feature better.

What success looks like:

●​ Total success
○​ A statistically significant improvement in time to first paint. This would

immediately justify proceeding with a better implementation. We would still need
to revalidate the result against the stable channel once the new implementation
was complete, as the behaviour of users on the dev and stable channels is
known to differ.

●​ Partial success
○​ An improvement in time to first paint, but without statistically significance. This

could mean that the experiment was too small, or just nothing at all. By itself, it
would not justify further investment.

○​ An improvement in simulated load times, based on data gathered during the
experiment. Depending on the degree of the improvement and the realism of the
simulation, this might or might not justify further investment.

○​ Interest from other browser vendors or server operators. This would bias towards
further investment.

●​ Bad success
○​ A statistically significant regression in time to first paint. We would need to invest

time in investigating the cause. This investigation might ultimately lead to some
insights that would improve page load times, but probably not with
stale-while-revalidate.

What failure looks like:

●​ Total failure
○​ No improvement in time to first paint, no potential for improvement seen based

on data gathered during the experiment.
○​ Chronic website misbehaviour caused by the feature.

●​ Partial failure
○​ Browser instability due to the implementation.
○​ Experiment aborted due to crashes.
○​ Conditional requests from the Blink cache interfere with the results (there is a

separate experiment planned to find out how often conditional requests from the
Blink cache bypass the Chrome cache, and thus gauge the risk).

PUBLIC

Stage 3.5: Revert Initial Implementation
If the initial evaluation justifies further investment, this means removing the code from
net::HttpCache to perform asynchronous revalidation, and disabling asynchronous revalidation
in HttpCache::Transaction while retaining the code which determines when we might use it.

If further investment is not justified, we just revert everything implemented in Stage 2.

Ideally these steps should be performed before the branch for M39, but as long as the
functionality is disabled, it is not too harmful for it to be included in the stable release.

Stage 4: Better implementation
The implementation added in Stage 2 has serious deficiencies:

1.​ [Critical] Cookies, Strict-Transport-Security and Public-Key-Pins headers are lost on
async responses.

2.​ [Bad] stale-while-revalidate logic is not applied when Blink’s cache sends a conditional
request.

3.​ [Suboptimal] Async requests compete for bandwidth with synchronous resources in
many cases.

4.​ [Meh] The asynchronous revalidation requests are invisible to extensions.

Sketch of better implementation

●​ A new load flag indicates that a request is eligible for stale-while-revalidate treatment
and the requestor is capable of performing asynchronous requests. This flag is set on all
normal requests from blink.

●​ A new flag in HttpResponseInfo indicates that the response is stale and asynchronous
revalidation needs to be performed.

●​ content::ResourceDispatcherHostImpl would recognise the flag and trigger an
asynchronous request. A content::DetachableResourceHandler would be used to ensure
that the request proceeded even if the renderer went away.

●​ Another new load flag would indicate an asynchronous revalidation request. Among
other things this would enable content::ResourceScheduler to schedule it after
synchronous requests, and extension APIs to treat the request specially.

●​ Blink’s cache has an implementation closely matching the one in net::HttpCache; in the
stale-while-revalidate case it sends a notification that it re-used the cache resource, and
then sends a request with the “async revalidation” load flag set. The behaviour in
content/ and net/ is then the same, except that the response data is actually sent back to
the renderer (assuming it is still alive).

Code Locations

○​ net/http/
○​ content/
○​ chrome/

PUBLIC

○​ src/third-party/WebKit/Source/core/fetch/

Privacy Impact
The Resource-Freshness header could be used to fingerprint users.

Existing cache-based fingerprinting techniques (eg. supplying a unique Last-Modified header)
already exist. Workarounds for existing cache-based fingerprinting techniques will also be
effective with the Resource-Freshness header.

Incognito Mode and separate User Profiles

In Chrome, Incognito Mode and different User Profiles already use separate caches to protect
against information leaks, so no extra changes are required.

Security Impact
The value of the stale-while-revalidate directive in the requests can be controlled by the server.
However, it is converted to an 64-bit integer internally, so it is not possible to inject arbitrary
data. It is only returned for the same entity, so cross-domain or cross-protocol attacks should not
be possible.

A man-in-the-middle attacker can use stale-while-revalidate to cause their malicious content to
be used one more time after the attack has ended. This appears strictly weaker than a similar
attack using max-age, where the malicious content will be re-used any number of times.

Revision History
●​ 2014-07-14: First version
●​ 2014-07-15: Clarified that “Chrome-Freshness” name is temporary. Simplified the

“Privacy Impact” section.
●​ 2014-07-18: Added note about stricter parsing of stale-while-revalidate compared to

max-age.
●​ 2014-07-22: Requirements for initial implementation added. First public version.
●​ 2014-07-28: Changed the temporary name to “Chromium-Resource-Freshness”.

Removed requirement to obey cookie settings. Require non-zero value to
stale-while-revalidate to receive the information header.

PUBLIC

●​ 2014-08-07: Add implementation details for stage 2.
●​ 2014-08-09: LOWEST priority is not lowest priority. Use IDLE priority instead. Added the

competing requirements of not stealing bandwidth from synchronous requests and not
keeping the radio alive unnecessarily. Change the return type of
RequiresValidation() rather than adding a new method.

●​ 2014-08-11: The initial implementation is only optimal if we are using a SPDY proxy.
Discuss the alternatives in the “alternatives considered” section.

●​ 2014-08-13: Note that LOAD_VALIDATE_CACHE must be added to the load flags of the
asynchronous transaction.

●​ 2014-08-19: “Chromium-Resource-Freshness” has been changed to
“Resource-Freshness” in the code. Update the design doc to match. Add steps 1.5 and
2.5 for conditional requests from Blink.

●​ 2014-08-21: Note the problem with losing cookie and transport security headers.
●​ 2014-08-28: The feature is off by default, controlled by a flag and field trial. Noted

changes that happened during implementation. Re-organised the document to reflect
that we need to rewrite everything on success.

●​ 2014-09-1: Add a requirement that the asynchronous request be the same as what the
synchronous request would have been. Add criteria for determining success or failure,
and plan to revert initial implementation.

●​ 2014-09-22: Updated to reflect implementation changes that happened during review.

	Implement Cache-Control: stale-while-revalidate
	Objective
	Background
	Proposed Design
	Stage 1: Resource-Freshness header
	Stage 1.5: Resource-Freshness header for conditional requests from Blink
	Stage 2: Experimental implementation
	Requirements
	Timeline
	Implementation
	Rejected Alternatives
	Code Locations

	Stage 3: Initial Evaluation
	What success looks like:
	What failure looks like:

	Stage 3.5: Revert Initial Implementation
	Stage 4: Better implementation
	Sketch of better implementation
	Code Locations

	Privacy Impact
	Incognito Mode and separate User Profiles

	Security Impact
	
	Revision History

