
Securing MuleSoft API using Salesforce
OAuth2 (OpenID Connect)

Author: Uresh Kuruhuri
Senior Consultant
Siddhi Worx LLC

Implementation​ 3

Step 1: Create (parent) Connected App with OpenID Connect scope in Salesforce.​ 3

Step 2: Create a Salesforce Client provider under Anypoint Access Management.​ 6

Step 3: Design and implement an API​ 9

Step 4: Apply the OpenID Connect token enforcement policy on the api gateway​ 10

Step 5: Request access to the API​ 13

Step 6: Generate access token​ 16

Step 7: Use access token to access the API using the API proxy​ 19

Additional Resources​ 20

Implementation

Step 1: Create (parent) Connected App with OpenID Connect scope in Salesforce.
Even though we mention Salesforce as identity provider in this context, it is not enabled
explicitly in this implementation. We need to create a Connected App in the Salesforce side.
Let's call it MuleSoft (for the sake of understanding, also can be referred to as parent connected
app). In practice, the MuleSoft parent connected app sends a request to the dynamic client
registration endpoint to create a child connected app. The child connected apps (or the client
app created in MuleSoft, mentioned in Step #5 above) are needed for consumers to access
data.

The first step is to create a connected app in Salesforce. Also check this additional link on
configuring the basic information for the app.
1.​ Login to Salesforce and go to Setup. In Quick Find search box, type and select App

Manager.
2.​ Click New Connected App.
3.​ In the screen, enter the required details as below​

a.​ Connected App Name: Enter a name for the connected app (consider this one as
parent app). e.g. MuleSoft.

https://help.salesforce.com/articleView?id=sf.connected_app_create_openid_connect.htm&type=5
https://help.salesforce.com/articleView?id=sf.connected_app_create_basics.htm&type=5

b.​ API Name: Usually this auto populates based on the connected app name. You are
allowed to change it to the required value.

c.​ Contact Email: Email contact for this connected app.
d.​ Contact Phone: Phone number contact for this connected app (optional)
e.​ Logo Image URL: You can upload an image (optional)
f.​ Enable OAuth Settings: Enable the check mark field.

4.​ Proceed to select and add the necessary OAuth scopes and other settings as required.
Check the following screenshot:​

a.​ Enter a callback URL: https://login.salesforce.com/services/oauth2/callback
b.​ Selected OAuth Scopes: Select the scopes per the screenshot. If the screenshot is

not visible, add the following scopes:​
Access your basic information (id, profile, email, address, phone) ​
Allow access to your unique identifier (openid)​
Perform requests on your behalf at any time (refresh_token, offline_access)

c.​ Select relevant check boxes: ​
Require Secret for Web Server Flow ​
Require Secret for Refresh Token Flow​
Introspect All Tokens​
Configure ID Token and Include Standard Claims

Once you save the settings the connected app is created.

However, make sure the relevant policy is associated with the connected app. In order to do so,
view (App Manager → MuleSoft connected app → click dropdown arrow at the end and click
View) the connected app.

https://login.salesforce.com/services/oauth2/callback

Now click Manage and then click Edit Policies button (see screenshot below). Select the option
that you want to use and proceed with the remaining steps.

In this example , All users may self-authorize option was used. Also, I left the default Enforce
IP restrictions as is. You may change this per your requirements.

Click Save down below.

Once the setup is complete, the connected app is created and ready. The connected app after
creation would look similar to the screenshot below.

Verify the highlighted sections in this screenshot. Also take a note of the Initial Access Token
for Dynamic Client Registration. This will be used in the following setup in Anypoint
Platform. This completes the setup on the Salesforce side.

Step 2: Create a Salesforce Client provider under Anypoint Access Management.
Now it is time to initiate the dynamic client registration process in the Anypoint Platform. The
user needs to have admin access to do this. To do this follow the steps below:

1.​ Login to Anypoint platform.
2.​ Navigate to Access Management → Client Providers and click Add Client Provider.
3.​ Select OpenID Connect Dynamic Client Registration.​

4.​ It opens up the following page to enter the relevant details.​

The below urls and related OpenID connect metadata can be obtained by using the url
$ISSUER/.well-known/openid-configuration where the $ISSUER is the issuer of the OpenID
Connect related connected app.

In this case, if you have a domain based salesforce e.g. it would be something like this
https://uresh.my.salesforce.com/.well-known/openid-configuration

Or in most cases it would be https://login.salesforce.com/.well-known/openid-configuration​

https://uresh.my.salesforce.com/.well-known/openid-configuration
https://login.salesforce.com/.well-known/openid-configuration

a.​ Issuer: Enter the issuer name e.g. https://uresh.my.salesforce.com
b.​ Client Registration URL : Enter the client registration url. e.g.

https://uresh.my.salesforce.com/services/oauth2/register
c.​ Authorization Header: Here you have to enter the initial access token in this format

Bearer <initial-access-token>. e.g. Bearer 0a3772898Abcj8…..fhasdfo97231D
d.​ Enable client deletion in Anypoint platform: This is optional. This enables you to

delete the client apps created for the API in Anypoint platform.
e.​ Enable client deletion and updates in IdP: This is optional. This enables you to

delete/update the client app created in the Identity Provider. In this example Salesforce.
f.​ Client ID: This is the consumer key that is generated in the Salesforce for the parent

connected app.
g.​ Client Secret: This is the consumer secret that is generated in the Salesforce for the

parent connected app.
h.​ Authorize URL: The OpenID authorization url as is available from the metadata. e.g.

https://uresh.my.salesforce.com/services/oauth2/authorize
i.​ Token URL: The OpenID token generation url as is available from the metadata. e.g.

https://uresh.my.salesforce.com/services/oauth2/token
j.​ Token Introspection URL: The OpenID token introspection URL as is available from the

metadata. e.g. https://uresh.my.salesforce.com/services/oauth2/introspect
5.​ Click Save.

Note: In order to use this client provider, it needs to be associated with an environment. Also,
once associated with an environment, this client provider is not automatically applied to the
existing API's.

In order to apply this client provider to one of the environments, do the following:

1.​ Navigate to Access Management → Environments.
2.​ Select an environment. It opens the following dialog box.​

https://uresh.my.salesforce.com/services/oauth2/introspect

3.​ Under the Client provider (optional) field, select the newly created identity provider.
4.​ Click Update.

Step 3: Design and implement an API
For keeping the brevity of this article, API design and implementation is not shown here.
Anyway, the important thing here is that you apply the OAuth2.0 security scheme to your API.
Here below is the sample security scheme for your reference.

#%RAML 1.0 SecurityScheme
type: OAuth 2.0

description: |
 This API supports OAuth 2.0 for authenticating all API requests.
describedBy:
 queryParameters:
 access_token:
 description: |
 Used to send a valid OAuth 2 access token.
 type: string
 responses:
 400:
 description: Invalid token.
 401:
 description: |
 Unauthorized or Connection error when connecting to the authorization
server.
 403:
 description: |
 Forbidden, invalid client application credentials.
 500:
 description: |
 Bad response from authorization server, or WSDL SOAP Fault error.
settings:
 authorizationUri: https://uresh.my.salesforce.com/services/oauth2/authorize
 accessTokenUri: https://uresh.my.salesforce.com/services/oauth2/token
 authorizationGrants: [authorization_code]

Step 4: Apply the OpenID Connect token enforcement policy on the api gateway
Once the Dynamic Client Registration is complete and the client provider is associated with an
environment, it is now available to be applied to the API's.

The option of selecting the OpenID Connect token enforcement policy would only be
available after a client provider is associated with the environment.

In order to apply for the existing API's you have to go the API Manager, select the api and
update the Client provider field to the newly enabled client provider.

However, in this example we add the api to the API manager and the client provider is
automatically selected.

Follow the steps below to accomplish this

1.​ Login to Anypoint Platform.
2.​ Go to API Manager.

3.​ Click Manage API → Manage API from Exchange.​

​

In the page now enter the following information per the example screenshot below for
your API.

a.​ API name: Search and select the api you want to manage.
b.​ API version: Select the API version you want to manage.
c.​ Asset version: Select the asset version of the API you want to manage.
d.​ Managing Type: Select Endpoint with Proxy if you want to manage using an API

gateway.
e.​ Proxy deployment target: By default it is Cloudhub. If you have to manage the API

in on-prem instance, select Hybrid.
f.​ Mule version: Select Mule 4 or as applicable.
g.​ Implementation URI: Provide the implementation url for the API. e.g.

https://abc.com/api

h.​ Client provider: Select the identity provider created in Step 2.
4.​ Click Save.
5.​ Now go to Policies and click Apply New Policy.
6.​ Select OpenID Connect token enforcement policy. Refer to the screenshot below.​

7.​ Once the policy is applied and set, Select Settings again.
8.​ Deployment configuration section is now available to deploy the API gateway (proxy

app).​

9.​ Select the Runtime version as application. In this example it is v4.3.0.
10.​Give a name to the proxy application.
11.​Click Deploy/Redeploy to have the API gateway (proxy) deployed in the Cloudhub.

This completes applying the policy

Step 5: Request access to the API
Now that the main configuration is set up, we need to request access to the API. As you may
know it, we request it from the Anypoint Platform. By doing so, this process automatically
creates a client connected app in Salesforce (following the settings set in the parent Mulesoft
app) because of the DCR process.

1.​ Login to Anypoint Platform and go to Exchange.
2.​ Search the API and open the API page.​

3.​ Click the vertical ellipsis icon to open the extra menu items and click Request access.
4.​ It shows up the following dialog​

5.​ In the API Instance, select the instance of the app that we want to request access to.

6.​ In the Application dropdown, click Create a new application. It opens up a new dialog to
enter the details.​

a.​ Application name: Enter the application name. e.g. accounts-api-client.
b.​ Description: This is optional. You can enter the description that you would like for

this client app.
c.​ Application URL: This is optional as well. You can leave it or enter the application

url.
d.​ OAuth 2.0 Grant Type: Select the applicable grant type for the OAuth access for this

client app. I selected the Implicit and Authorization Code Grant (this needs Refresh
Token grant as well.)

e.​ OAuth 2.0 redirect URIs: This is optional, but in our case we would use the url as:
https://login.salesforce.com/services/oauth2/success. Remember this has to be used
as is while retrieving the access token.

7.​ Click Create. This step automatically creates a client connected app in Salesforce as
well (let's call this API related connected app or child connected app). Here below are
screenshots from Salesforce/MuleSoft for this app.​

https://login.salesforce.com/services/oauth2/success

​
​
If you observe, it automatically adds another OAuth scope Access and manage your
data (api). The below screenshot shows the client application created in MuleSoft.​
​

​
​
The Client ID and Client Secret shown in the MuleSoft app page are exactly same as
Consumer Key and Consumer Secret respectively, for the connected app created in
Salesforce

As of this step, the main setup is done.

Step 6: Generate access token

This part is done using the Postman app here for demo purposes only. You may have to work
on code client or as is the case may be.

First let's check if the API implementation is accessible. Once the API gateway is created and
deployed, the direct access to the API should not be available.

Try accessing one of the resources and you should see an error message as with HTTP 400
error as Bad request. Here is a sample screenshot

Let’s get an access token.

We have to enter the following values in the Configure New Token utility under Postman per the
screenshot. Open a tab and set the address pointing to a resource using the API gateway url
(proxy).

Fill in the values for the relevant fields as suggested below:

a.​ Token Name: You can set any name as you like and permitted.
b.​ Grant Type: You can select one of the grant types that were set to the connected app

created as a part of requesting access to the api in the previous step. In this example,
we will go with Authorization Code.

c.​ Callback URL: This url has to be exactly same as the one set in the connected app
create for the api. This has to be the redirect url that was in the OAuth 2.0 redirect URIs
in the previous step. In this example it is
https://login.salesforce.com/services/oauth2/success

d.​ Auth URL: It should be the same as the one retrieved in the OpenID Connect
metadata. In this example, it was set to
https://uresh.my.salesforce.com/services/oauth2/authorize.

e.​ Access Token URL: It should be the same as the one retrieved in the OpenID Connect
metadata. In this example, it was set to
https://uresh.my.salesforce.com/services/oauth2/token

f.​ Client ID: The Client ID that was generated for the connected app for the api (i.e.
accounts-api-client) in the previous step: Request access to the API.

g.​ Client Secret: The Client secret that was generated for the connected app for the api
(i.e. accounts-api-client) in the previous step: Request access to the API.

h.​ Client Authentication: Select Send client credentials in body option.

Click Get New Access Token.
It prompts for Salesforce Login. Enter your Salesforce credentials.

Once the authentication is successful, it prompts to authorize access as below​

Click Allow.

Once it is done, Postman utility gets the new token and shows the Manage Access Tokens
dialog as below. Click Use Token.

Step 7: Use access token to access the API using the API proxy
Now that we have the access token we can use it to access the resource(s) of the API using the
API gateway (proxy app).

Continuing in this example, in Postman, the access token is already set (when Use Token was
clicked).

Click Send to see the API JSON payload returned in the body section as shown in the
screenshot below.

​
This concludes the implementation.

Additional Resources
●​ Connecting Your APIs with MuleSoft and Salesforce Identity
●​ Integrate Service Providers as Connected Apps with OpenID Connect
●​ Salesforce: Single Sign-On
●​ Salesforce: Configure Basic Connected App Settings
●​ Salesforce: Manage OAuth Access Policies for a Connected App
●​ Salesforce: OpenID Connect Token Introspection
●​ MuleSoft: Configure OpenID Connect Client Provider

https://developer.salesforce.com/blogs/2018/11/connecting-your-apis-with-mulesoft-and-salesforce-identity.html
https://help.salesforce.com/articleView?id=sf.connected_app_create_openid_connect.htm&type=5
https://help.salesforce.com/articleView?id=sf.sso_about.htm&type=5
https://help.salesforce.com/articleView?id=sf.connected_app_create_basics.htm&type=5
https://help.salesforce.com/articleView?id=connected_app_manage_oauth.htm&type=0
https://help.salesforce.com/articleView?id=sf.remoteaccess_oidc_token_introspection_endpoint.htm&type=5
https://docs.mulesoft.com/access-management/configure-client-management-openid-task

	Securing MuleSoft API using Salesforce OAuth2 (OpenID Connect)
	
	Implementation
	Step 1: Create (parent) Connected App with OpenID Connect scope in Salesforce.
	Step 2: Create a Salesforce Client provider under Anypoint Access Management.
	Step 3: Design and implement an API
	
	Step 4: Apply the OpenID Connect token enforcement policy on the api gateway
	
	Step 5: Request access to the API
	
	Step 6: Generate access token
	
	Step 7: Use access token to access the API using the API proxy

	
	Additional Resources

