Securing MuleSoft API using Salesforce
OAuth2 (OpenlD Connect)

Author: Uresh Kuruhuri
Senior Consultant
Siddhi Worx LLC

Implementation
Step 1: Create (parent) Connected App with OpenlD Connect scope in Salesforce.
Step 2: Create a Salesforce Client provider under Anypoint Access Management.
Step 3: Design and implement an API
Step 4: Apply the OpenID Connect token enforcement policy on the api gateway
Step 5: Request access to the API
Step 6: Generate access token
Step 7: Use access token to access the API using the API proxy

Additional Resources

D W W

13
16
19
20

Implementation

Step 1: Create (parent) Connected App with OpenlID Connect scope in Salesforce.

Even though we mention Salesforce as identity provider in this context, it is not enabled
explicitly in this implementation. We need to create a Connected App in the Salesforce side.
Let's call it MuleSoft (for the sake of understanding, also can be referred to as parent connected
app). In practice, the MuleSoft parent connected app sends a request to the dynamic client
registration endpoint to create a child connected app. The child connected apps (or the client
app created in MuleSoft, mentioned in Step #5 above) are needed for consumers to access
data.

The first step is to create a connected app in Salesforce. Also check this additional link on

configuring the basic information for the app.
1. Login to Salesforce and go to Setup. In Quick Find search box, type and select App
Manager.
2. Click New Connected App.
3. Inthe screen, enter the required details as below

SETUP
App Manager

New Connected App

Save | | Cancel

To publish an app, you need to be using a Developer Edition organization with a namespace prefix chosen.

Basic Information

Connected App Name Il

APl Name Il

Contact Email Il

Q0| (T |®

Contact Phone I

Logo Image URL I e]

Upload logo image or Choose one of our sample logos

Icon URL I l
Choose one of our sample logos

Info URL I]

Description I]

v API (Enable OAuth Settings)
Enable OAuth Settings D f

a. Connected App Name: Enter a name for the connected app (consider this one as
parent app). e.g. MuleSoft.

https://help.salesforce.com/articleView?id=sf.connected_app_create_openid_connect.htm&type=5
https://help.salesforce.com/articleView?id=sf.connected_app_create_basics.htm&type=5

b. API Name: Usually this auto populates based on the connected app name. You are

allowed to change it to the required value.

Contact Email: Email contact for this connected app.

Contact Phone: Phone number contact for this connected app (optional)

Logo Image URL: You can upload an image (optional)

Enable OAuth Settings: Enable the check mark field.

4, Proceed to select and add the necessary OAuth scopes and other settings as required.
Check the following screenshot:

"o Qo0

‘ W setup

App Manager

v API (Enable OAuth Settings)
Enable OAuth Settings

Enable for Device Flow]

Callback URL

Use digital signatures ()

Selected OAuth Scopes

Available OAuth Scopes Selected OAuth Scopes
Access and manage your Eclair data (eclair_api) Access your basic information (id, profile, email, address, phone)
Access and manage your Salesforce CDP Ingestion API data (cdp_ingest_api) \Allow access to your unique identifier (openid)
Access and manage your Wave data (wave_api) Add |Perform requests on your behalf at any time (refresh_token, offline_access)
Access and manage your data (api) N

Access custom permissions (custom_permissions)
Allow access to Lightning applications (lightning)
Allow access to content resources (content)

Full access (full)

Provide access to custom applications (visualforce)
Provide access to your data via the Web (web)

4
Remove

Require Secret for Web Server Flow.
Require Secret for Refresh Token Flow. c

Introspect All Tokens

Configure ID Token

Token Valid for M\ Minutes

ID Token Audiences: [CONSUMER KEY

v
Include Standard Claims *
[J Include Custom Attributes *
[Include Custom Permissions *

a. Enter a callback URL: https://login.salesforce.com/services/oauth2/callback
b. Selected OAuth Scopes: Select the scopes per the screenshot. If the screenshot is

not visible, add the following scopes:

Access your basic information (id, profile, email, address, phone)

Allow access to your unique identifier (openid)

Perform requests on your behalf at any time (refresh_token, offline_access)
c. Select relevant check boxes:

Require Secret for Web Server Flow

Require Secret for Refresh Token Flow

Introspect All Tokens

Configure ID Token and Include Standard Claims

Once you save the settings the connected app is created.

However, make sure the relevant policy is associated with the connected app. In order to do so,
view (App Manager - MuleSoft connected app - click dropdown arrow at the end and click
View) the connected app.

https://login.salesforce.com/services/oauth2/callback

Now click Manage and then click Edit Policies button (see screenshot below). Select the option

that you want to use and proceed with the remaining steps.

nnnnnnnnn

Connected App Edit

()

MuleSoft

Basic Information

+ All users may self-authorize
Admin approved users are pre-authorized

OAuth Policies
Permitted Users

Enable Single Logout

Session Policies

Timeout Value

—None-- v

In this example , All users may self-authorize option was used. Also, | left the default Enforce

Version 1
Description

1 =Required Information

Mobile Start URL

. a

IP Rolaxation | Enforce IP

(@ Refresh token is valid until revoked
() Immediately expire refresh token

(O Expire refresh token if not used for Day(s) v

()Expire refreshtokenafter | |[Day(s) v|

v)

Refresh Token Policy:

|) High assurance session required

IP restrictions as is. You may change this per your requirements.

Click Save down below.

Once the setup is complete, the connected app is created and ready. The connected app after

creation would look similar to the screenshot below.

SETUP
Manage Connected Apps

Connected App Name

MuleSoft

« Back to List: Custom Apps

Edit |Delete | Manage

Version
API Name
Created Date

Contact Email

(@)

MuleSoft

Contact Phone
Last Modified Date

Description
Info URL

v API (Enable OAuth Settings)
Consumer Key
Copy

2

1.0

MuleSoft

7112021 9:28 AM
By: Uresh Kuruhuri

7/2/2021 9:04 AM
By: Uresh Kuruhuri

Consumer Secret Click to reveal

| Selected OAuth Scopes

Allow access to your unique identifier (openid)

"Access your basic information (id, profile, email, address, phone)
Perform requests on your behalf at any time (refresh_token, offine_access)

Callback URL https://login.

Enable for Device Flow
Require Secret for Refresh Token Flow
Token Valid for 0 Hour(s)

Include Custom Permissions.

¥ Initial Access Token for Dynamic Client Registration
Initial Access Token

Regenerate
Initial Access Token Value Click to reveal
¥ Configure ID Token
Token Valid for 30 Minutes

Include Custom Attributes

¥ Custom Connected App Handler
Apex Plugin Class
Run As

Require Secret for Web Server Flow
Introspect All Tokens
Include Custom Attributes

Enable Single Logout Single Logout disabled

Include Standard Claims

Include Custom Permissions

Verify the highlighted sections in this screenshot. Also take a note of the Initial Access Token
for Dynamic Client Registration. This will be used in the following setup in Anypoint
Platform. This completes the setup on the Salesforce side.

Step 2: Create a Salesforce Client provider under Anypoint Access Management.

Now it is time to initiate the dynamic client registration process in the Anypoint Platform. The
user needs to have admin access to do this. To do this follow the steps below:

1. Login to Anypoint platform.
2. Navigate to Access Management — Client Providers and click Add Client Provider.
3. Select OpenlID Connect Dynamic Client Registration.

— Access Management

ACCESS MANAGEMENT

Organization

Add Client Provider WS f

Roles Ope nAM

Users

Environments)
PingFederate
Multi-Factor Auth

Identity Providers (OpenID Connect Dynamic Client Registration)

Client Providers

Audit Logs

Connected Apps

External Access

4. It opens up the following page to enter the relevant details.

= Access Management

ACCESS MANAGEMENT Dynamic Client Registration

Organization
Users Issuer @

Roles l _.my.salesforce.com l a

Environments

Multi-Factor Auth Client Registration URL* ®

Identity Providers _.my.salesforce.comlservices/oauth 2/register l b

Client Providers

Audit Logs Authorization Header ®
Connected Apps | Sh@ l ¢

External Access

Advanced settings A

SETTINGS
Runtime Manager D Disable server certificate validation @
Flow Designer
Enable client deletion in Anypoint Platform ® d
SUBSCRIPTION
Enable client deletion and updates in IdP ® e

Runtime Manager

Object Store

Token Introspection Client

Client ID* ®

Client Secret ®

........ Show

OpenlD Connect Authorization URLs

Authorize URL* ®
_.my.salesforce.comlservices/oauthZlauthorize l h
Token URL* @

_.my.salesforce.com/services/oauth 2/token l i

Token Introspection URL* @

_.my.salesforce.comlservices/oauth 2/introspect l]

The below urls and related OpenID connect metadata can be obtained by using the url
$ISSUER/.well-known/openid-configuration where the $ISSUER is the issuer of the OpenlD
Connect related connected app.

In this case, if you have a domain based salesforce e.g. it would be something like this
https://uresh.my.salesforce.com/.well-known/openid-configuration

Or in most cases it would be https://login.salesforce.com/.well-known/openid-configuration

https://uresh.my.salesforce.com/.well-known/openid-configuration
https://login.salesforce.com/.well-known/openid-configuration

a. Issuer: Enter the issuer name e.g. https://uresh.my.salesforce.com

b. Client Registration URL : Enter the client registration url. e.g.
https://uresh.my.salesforce.com/services/oauth2/register

c. Authorization Header: Here you have to enter the initial access token in this format
Bearer <initial-access-token>. e.g. Bearer 0a3772898Abc;j8.....fhasdfo97231D

d. Enable client deletion in Anypoint platform: This is optional. This enables you to
delete the client apps created for the API in Anypoint platform.

e. Enable client deletion and updates in IdP: This is optional. This enables you to
delete/update the client app created in the Identity Provider. In this example Salesforce.

f. Client ID: This is the consumer key that is generated in the Salesforce for the parent
connected app.

g. Client Secret: This is the consumer secret that is generated in the Salesforce for the
parent connected app.

h. Authorize URL: The OpenID authorization url as is available from the metadata. e.g.
https://uresh.my.salesforce.com/services/oauth2/authorize

i. Token URL: The OpenlD token generation url as is available from the metadata. e.g.
https://uresh.my.salesforce.com/services/oauth2/token

j- Token Introspection URL: The OpenlD token introspection URL as is available from the
metadata. e.g. https://uresh.my.salesforce.com/services/oauth2/introspect

5. Click Save.

Note: In order to use this client provider, it needs to be associated with an environment. Also,
once associated with an environment, this client provider is not automatically applied to the
existing API's.

In order to apply this client provider to one of the environments, do the following:
1. Navigate to Access Management — Environments.
2. Select an environment. It opens the following dialog box.

Edit environment

Name

Sandbox

Client ID

Client Secret

................................ Show

Client provider (optional) ©®
If none selected, Anypoint will remain as the client provider for this environment.

Select % }

Salesforce OIDC Remove

Delete Environment Cancel Update

https://uresh.my.salesforce.com/services/oauth2/introspect

3. Under the Client provider (optional) field, select the newly created identity provider.
4. Click Update.

Step 3: Design and implement an API

For keeping the brevity of this article, APl design and implementation is not shown here.
Anyway, the important thing here is that you apply the OAuth2.0 security scheme to your API.
Here below is the sample security scheme for your reference.

#%RAML 1.0 SecurityScheme
type: OAuth 2.0

description: |
This API supports OAuth 2.0 for authenticating all API requests.
describedBy:
queryParameters:
access_ token:
description: |
Used to send a valid OAuth 2 access token.
type: string
responses:
400:
description: Invalid token.
401:
description: |
Unauthorized or Connection error when connecting to the authorization
server.
403:
description: |
Forbidden, invalid client application credentials.
500:
description: |
Bad response from authorization server, or WSDL SOAP Fault error.
settings:
authorizationUri: https://uresh.my.salesforce.com/services/oauth2/authorize
accessTokenUri: https://uresh.my.salesforce.com/services/oauth2/token
authorizationGrants: [authorization code]

Step 4: Apply the OpenlD Connect token enforcement policy on the api gateway

Once the Dynamic Client Registration is complete and the client provider is associated with an
environment, it is now available to be applied to the API's.

The option of selecting the OpenID Connect token enforcement policy would only be
available after a client provider is associated with the environment.

In order to apply for the existing API's you have to go the APl Manager, select the api and
update the Client provider field to the newly enabled client provider.

However, in this example we add the api to the APl manager and the client provider is
automatically selected.

Follow the steps below to accomplish this

1. Login to Anypoint Platform.
2. Go to APl Manager.

3. Click Manage APl - Manage API from Exchange.
Manage API from Exchange

API Configurations

APl name: accounts-api Q a
Asset type: RAML/OAS v

APl version: 1.0.0 v View APl in Exchange b
Asset version: 1.0.2 v c
Managing type: Basic Endpoint o Endpoint with Proxy d

Proxy deployment target:

e
o CloudHub
Hybrid
Mule version: o Mule 4 f
Recommended
Mule 3 or below
Implementation URL: https://abc.com/api g
Client provider: ® Salesforce OIDC 2 h

TLS Context for outbound

@ Add TLS Context Used to secure outbound traffic
traffic:

Path:

Advanced options >

In the page now enter the following information per the example screenshot below for

your API.

API name: Search and select the api you want to manage.

API version: Select the API version you want to manage.

Asset version: Select the asset version of the API| you want to manage.

Managing Type: Select Endpoint with Proxy if you want to manage using an API

gateway.

e. Proxy deployment target: By default it is Cloudhub. If you have to manage the API
in on-prem instance, select Hybrid.

f. Mule version: Select Mule 4 or as applicable.

g. Implementation URI: Provide the implementation url for the API. e.g.
https://abc.com/api

apow

h. Client provider: Select the identity provider created in Step 2.
4. Click Save.
5. Now go to Policies and click Apply New Policy.
6. Select OpenID Connect token enforcement policy. Refer to the screenshot below.

= API Manager # NoCompany ~ ? UK

3 Manage Kubernetes-based non-Mule microservices with Anypoint Service Mesh. Read the documentation or Watch the webinar

API Administration (Sandbox) accounts-api (1.0.0) - Policies

SANDBOX accounts-api 1.0.0

API Status: @ Active Asset Version: 1.0.2 Latest [0} Type: RAML/OAS Manage CloudHub Proxy >
implementation URL: et R <2.cloucihub.io/api N
Alert ® Add dpoint N
Contracts
Mule rur jersion: 4.3.0-20210609
Policie >
SLATI
settings Automated Policies

There are no automated policies applied for the selected runtime version.

API level policies

Apply New Policy ‘ Edit policy order

Name Category Fulfills Requires
API Specification
v Openld Connect access token enforcement @ Security OAuth 2.0 protected ippet
Order Method Resource URI
1 All API Methods All API Resources View Detail || Actions v

7. Once the policy is applied and set, Select Settings again.
8. Deployment configuration section is now available to deploy the API gateway (proxy

app).

Deployment Configuration v

Runtime version: 4.3.0 v

Proxy application name: ® --proxy .cloudhub.io

9. Select the Runtime version as application. In this example it is v4.3.0.
10. Give a name to the proxy application.
11. Click Deploy/Redeploy to have the API gateway (proxy) deployed in the Cloudhub.

This completes applying the policy

Step 5: Request access to the API

Now that the main configuration is set up, we need to request access to the API. As you may
know it, we request it from the Anypoint Platform. By doing so, this process automatically
creates a client connected app in Salesforce (following the settings set in the parent Mulesoft
app) because of the DCR process.

1. Login to Anypoint Platform and go to Exchange.
2. Search the API and open the API page.

Exchange

@ accounts-api 4
! (Oreviews) Rate and review

Add description # Organization

Sy Published by

Published on [Jui1, 2021
Endpoints ~
vistitey & prvate
Jaccounts v

Asset versions for 1.0.x
Types v

Version Instances
Security v

B Mocking Service
@ Sandbox - 1.0.0:17023943

TR This page is m

Click Edit to add text, image:

tent.
jeos, code blocks, etc.
APlinstances

104

3. Click the vertical ellipsis icon to open the extra menu items and click Request access.
4. It shows up the following dialog

Request access X
APl Instance ’ 1.0.0:17023943 v]
Application Select application \%]
SLA tier accounts-api-client

@ Create a new application

Request access

5. Inthe API Instance, select the instance of the app that we want to request access to.

6.

In the Application dropdown, click Create a new application. It opens up a new dialog to
enter the details.

Create new application

Application Name

Enter application name a }

Description Write a description here... b
2
Application URL [https://yourcompany.com/applicationURL c J
OAuth 2.0 Grant type
D Implicit Grant
d
D Authorization Code
Grant
Refresh Token
Auth 2. i R
OAuth 2.0 redirect URIs @ https://yourcompany.com/callback e

Automatically register

D the redirect URIs for API
Notebook and API
Console

Application name: Enter the application name. e.g. accounts-api-client.

b. Description: This is optional. You can enter the description that you would like for
this client app.

c. Application URL: This is optional as well. You can leave it or enter the application
url.

d. OAuth 2.0 Grant Type: Select the applicable grant type for the OAuth access for this
client app. | selected the Implicit and Authorization Code Grant (this needs Refresh
Token grant as well.)

e. OAuth 2.0 redirect URIs: This is optional, but in our case we would use the url as:
https://login.salesforce.com/services/oauth2/success. Remember this has to be used
as is while retrieving the access token.

Click Create. This step automatically creates a client connected app in Salesforce as

well (let's call this API related connected app or child connected app). Here below are

screenshots from Salesforce/MuleSoft for this app.

o

https://login.salesforce.com/services/oauth2/success

SETUP.

Manage Connected Apps

«Back to List: Custom Apps

Edit| Delete | Manage

Version 1.0
APIName accounts_api_client
Created Date 7/1/2021 3:14 PM
By: Automated Process
Contact Email contact@autocreated. 1625177681507
Contact Phone
Last Modified Date 7/1/2021 3:14 PM
By: Automated Process

Description
Info URL.

¥ API (Enable OAuth Settings)
Consumer Secret Click to reveal

Callback URL hitps:/ogin salesforce.com/servicesioauth2/success

Flow Require Secret for Web Server Flow
Require Secret for Refresh Token Flow. Introspect All Tokens
Token Valid for 0 Hour(s) Inciude Custom Attributes

Include Custom Permissions Enable Single Logout Single Logout disabled

¥ Custom Connected App Handler
Apex Plugin Class
RunAs

If you observe, it automatically adds another OAuth scope Access and manage your
data (api). The below screenshot shows the client application created in MuleSoft.

& My applications list

accounts-api-client

This s a test client app.

Client ID: 3MVG9_|_oWKIqLrIE_HMjgHayr7sW2Iwi2QzvMaRMXN1ES.EQWUSzs WeKawUgda...| Application URL: - Grant Types: Authorization code, Implicit, Refresh token
c show (Redirect URIs: hitpsi/login.salesforce. D)
v
Sandbox

accountsapi]

1.0.0:17023943

The Client ID and Client Secret shown in the MuleSoft app page are exactly same as
Consumer Key and Consumer Secret respectively, for the connected app created in
Salesforce

As of this step, the main setup is done.

Step 6: Generate access token

This part is done using the Postman app here for demo purposes only. You may have to work
on code client or as is the case may be.

First let's check if the APl implementation is accessible. Once the API gateway is created and
deployed, the direct access to the API should not be available.

Try accessing one of the resources and you should see an error message as with HTTP 400
error as Bad request. Here is a sample screenshot

VALUE DESCRIPTION oo Bulk Edit

Let’s get an access token.

We have to enter the following values in the Configure New Token utility under Postman per the
screenshot. Open a tab and set the address pointing to a resource using the APl gateway url

(proxy).

Configure New Token

Configuration Options Advanced Options

Token Name

Grant Type

Callback URL @

Auth URL ©

Access Token URL (&

Client ID G

Client Secret ©

Fill in the values for the relevant fields as suggested below:

a.
b.

Token Name: You can set any name as you like and permitted.

Grant Type: You can select one of the grant types that were set to the connected app
created as a part of requesting access to the api in the previous step. In this example,
we will go with Authorization Code.

Callback URL: This url has to be exactly same as the one set in the connected app
create for the api. This has to be the redirect url that was in the OAuth 2.0 redirect URIs
in the previous step. In this example it is
https://login.salesforce.com/services/oauth2/success

Auth URL: It should be the same as the one retrieved in the OpenID Connect
metadata. In this example, it was set to
https://uresh.my.salesforce.com/services/oauth2/authorize.

Access Token URL: It should be the same as the one retrieved in the OpenID Connect
metadata. In this example, it was set to
https://uresh.my.salesforce.com/services/oauth2/token

Client ID: The Client ID that was generated for the connected app for the api (i.e.
accounts-api-client) in the previous step: Request access to the API.

Client Secret: The Client secret that was generated for the connected app for the api
(i.e. accounts-api-client) in the previous step: Request access to the API.

Client Authentication: Select Send client credentials in body option.

Click Get New Access Token.
It prompts for Salesforce Login. Enter your Salesforce credentials.

[] Login | Salesforce

salesforce

Username

Password

Log In to Sandbox
() Remember me

Forgot Your Password?

© 2021 salesforce.com, inc. All rights reserved.

Once the authentication is successful, it prompts to authorize access as below

[] Allow Access? | Salesforce

salesforce

Allow Access?

accounts-api-client is asking to:

* Access your basic information
« Allow access to your unique identifier
+ Access and manage your data

« Perform requests on your behalf at any time

Do you want to allow access for

Deny

To revoke access at any time, go to your personal settings.

Click Allow.

Once it is done, Postman utility gets the new token and shows the Manage Access Tokens
dialog as below. Click Use Token.

Step 7: Use access token to access the API using the API proxy

Now that we have the access token we can use it to access the resource(s) of the API using the
API gateway (proxy app).

Continuing in this example, in Postman, the access token is already set (when Use Token was
clicked).

Click Send to see the APl JSON payload returned in the body section as shown in the
screenshot below.

This concludes the implementation.

Additional Resources

Connecting Your APIs with MuleSoft and Salesforce Identity
Integrate Service Providers as Connected Apps with OpenlD Connect
Salesforce: Single Sign-On

Salesforce: Configure Basic Connected App Settings

Salesforce: Manage OAuth Access Policies for a Connected App
Salesforce: OpenID Connect Token Introspection

MuleSoft: Confi 0 ID C Client Provid

https://developer.salesforce.com/blogs/2018/11/connecting-your-apis-with-mulesoft-and-salesforce-identity.html
https://help.salesforce.com/articleView?id=sf.connected_app_create_openid_connect.htm&type=5
https://help.salesforce.com/articleView?id=sf.sso_about.htm&type=5
https://help.salesforce.com/articleView?id=sf.connected_app_create_basics.htm&type=5
https://help.salesforce.com/articleView?id=connected_app_manage_oauth.htm&type=0
https://help.salesforce.com/articleView?id=sf.remoteaccess_oidc_token_introspection_endpoint.htm&type=5
https://docs.mulesoft.com/access-management/configure-client-management-openid-task

	Securing MuleSoft API using Salesforce OAuth2 (OpenID Connect)
	
	Implementation
	Step 1: Create (parent) Connected App with OpenID Connect scope in Salesforce.
	Step 2: Create a Salesforce Client provider under Anypoint Access Management.
	Step 3: Design and implement an API
	
	Step 4: Apply the OpenID Connect token enforcement policy on the api gateway
	
	Step 5: Request access to the API
	
	Step 6: Generate access token
	
	Step 7: Use access token to access the API using the API proxy

	
	Additional Resources

