
FLIP-91: Support SQL Client Gateway

Motivation
The whole conception and architecture of SQL Client are proposed in FLIP-24 which mainly

focuses on embedded mode. The goal of this FLIP is to extend FLIP-24 to support gateway

mode and REST/JDBC interfaces that could make it easier for users to use Flink.

As we know, the Java Database Connectivity (JDBC) API is the industry standard for

database-independent connectivity between the Java programming language and a wide

range of databases. JDBC technology allows you to use the Java programming language to

exploit "Write Once, Run Anywhere" capabilities for applications that require access to

enterprise data.

JDBC interface is designed based on traditional databases, which defines many operations

on a bounded dataset. As Flink batch is also bounded data processing, we could use JDBC

interface to manipulate flink batch jobs (e.g. submit queries, cancel jobs, retrieve results,

etc.). However, Flink streaming is unbounded data processing and some operations of JDBC

can not be supported, for example:

1.​ Statement#executeQuery() will return the affected row count for DML statements, but

we can’t get the result because the streaming job won’t finish.

2.​ Stream-specific features are not defined in JDBC, like pausing a streaming job.

This FLIP will only involve JDBC on Flink batch, and whether we can add limited support for

JDBC on Flink streaming will be discussed in further FLIPs and design documents if needed.

Representational state transfer (REST) is a software architectural style that defines a set of

design principles and constraints to be used for creating Web services based on HTTP. It's

not an industry standard like JDBC, so we are free to design the APIs to meet our

requirements (such as pausing a streaming job). This FLIP will only introduce APIs which

meet the requirement of current embedded mode’s functionality and basic JDBC

implementation.

https://cwiki.apache.org/confluence/display/FLINK/FLIP-24+-+SQL+Client
https://cwiki.apache.org/confluence/display/FLINK/FLIP-24+-+SQL+Client

There are three typical user scenarios which will be supported in this FLIP:

1.​ Users can connect to the gateway using CLI client(s) and execute batch or streaming
jobs.

2.​ User program(s) can connect to the gateway through REST API and execute batch
or streaming jobs. REST API makes it easy and lightweight for user programs to
manipulate a Flink cluster. e.g. we could use Shell program (even Postman
application) to execute Flink jobs through REST API.

3.​ Any program which supports JDBC can connect to the gateway and execute batch
jobs. The programs can be BI tools (e.g. Tableau), JDBC clients (e.g. Beeline) or
user Java programs. These programs will depend on the JDBC implementation on
Flink (or named Flink JDBC driver).

Like FLIP-24, this is also an initial minimum viable product for SQL client gateway which

could allow users to use Flink with JDBC and REST. More features will be added based on

further discussion and feedback from users and contributors.

Public Interfaces
●​ JDBC interface

●​ REST APIs

Proposed Changes

General Architecture
 FLIP-24 had proposed an architecture of SQL client, we make some additions and
adjustments:

1.​ REST API will be the unified interface for connecting different clients to the server.
Not only CLI client can be connected to server through REST API, the
communication protocol of java.sql.Connection in JDBC can also be REST API.

2.​ The architecture of embedded and gateway mode will be unified. We treat the
embedded mode as a special case of the gateway mode. So that all components and
code of gateway mode can be reused. After unification, in gateway mode we will
setup a server JVM process and multiple CLI client JVM processes; while in
embedded mode, both CLI client and gateway will run in the same single JVM
process. CLI client will become a very lightweight component. It only needs to send
user queries to the server and display the results from the server.

3.​ Currently, Executor supports basic Session functionality in embedded mode. But the
current implementation of Executor can’t meet the requirement of gateway. In

https://www.getpostman.com/
https://www.tableau.com/
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/FLINK/FLIP-24+-+SQL+Client
https://cwiki.apache.org/confluence/display/FLINK/FLIP-24+-+SQL+Client

gateway mode, we should consider that if there are too many sessions (clients), the
Executor may be OOM. To solve this problem, a separate component should be
introduced named SessionManager, which can store all sessions, limit the max
number of living sessions, remove the expired sessions, etc.

4.​ A flink job can be canceled through REST API before it ends, so the statement API
shall be asynchronous and support retrieving the results or canceling a running job
later on (actually, JDBC also requires support for canceling jobs). Currently, Executor
only supports canceling a SELECT query, not canceling other queries. To solve this,
we’re introducing SessionOperation. SessionOperation is a specific representation of
a command. For example ShowCatalogOperation, ExecuteQueryOperation, etc. It
can execute the command asynchronously and provide the execution result. Each
SessionOperation has an identifier which could be used to cancel the operation or
get the result. Currently, we only provide asynchronous REST API, and will provide
synchronous REST API based on users’ feedback in future.
A SessionOperation belongs to a specific Session, so the operations will be removed
when the session is closed or expired. To do all these management works, we will
also introduce an SessionOperationManager. In current design, the executor will be
kept and the execution of a SessionOperation will be delegated to Executor.
In a long-term, most functionality of Executor will be replaced with SessionOperation.
If a new feature is needed, a new SessionOperation, rather than a method in the
Executor interface, will be added. (This design also matches the Open-Closed design
principle as adding methods to the interface requires changes in the old sub-classes
of that interface.)

Component Description
●​ CLI Client：client that receives user commands and displays results returned from

gateway. The specific planner (old or blink) and the specific execution type (batch or

stream) must be given when CLI client is created. (corresponding to scenario 1)

●​ User Program: user program that could manipulate the Flink cluster based on REST

API. (corresponding to scenario 2)

●​ JDBC Client: client that could manipulate the Flink cluster based on JDBC interface.

(corresponding to scenario 3, like beeline, tableau)

●​ Flink JDBC Driver: the implementation of JDBC interface based on REST API. (it

means the communication protocol is REST API) Only batch is supported now

because JDBC interface is defined for traditional database.

●​ REST Server: a web server could receive commands from clients and execute sql

jobs on flink cluster

○​ CommandParser: parse user commands itself (few commands), or calls

flink-sql-parser. One command corresponds to one SessionOperation.

○​ Session: similar to HTTP Session, which could maintain user identity and

store user-specific data during multiple request/response interactions

between a client and REST Server. A session preserves:

■​ Information about the session itself (session identifier, creation time,

time last accessed, etc.)

■​ Actions that the session could have (executeStatement, etc)

○​ SessionManager: manage sessions, including

■​ store all sessions

■​ create a session when a client connects the server

■​ remove a session when a client closes its session

■​ periodically remove expired sessions

■​ limit the max number of living sessions to avoid OOM in Gateway

○​ SessionOperation: a specific representation of a command, which could

execute (sync or async) the command and return the executing result. A

SessionOperation is created in a specific session, and when the session is

expired, the living operations belonging to the session will also be destroyed.

○​ SessionOperationFactory: create a new session operation based on

command

○​ AuthorizationManager: manage authorization which is not involved in this

design

●​ Executor: a gateway for communicating with Flink and other external systems

Gateway Mode

Embedded Mode

The architecture of embedded mode is similar to gateway mode, and all components could
be reused. The only difference is that the processes of client and gateway are different in
gateway mode, while in embedded mode they are in the same process.

Gateway

REST Server

Flink has introduced REST server in flink-runtime module to support web monitor and
dispatcher. A lot of classes are very common, for example: RestServerEndpoint,
RequestBody, ResponseBody, MessageParameters and Router. However some classes
can only be used for flink-runtime, for example: RestfulGateway, AbstractRestHandler.
There are two approaches to support REST server on SQL client gateway:

1.​ reuses part of the REST server code in flink-runtime
●​ advantages

i.​ unified REST server framework and a lot of code can be reused
●​ disadvantages

i.​ may need to change REST server code in flink-runtime module to
support new features in SQL client

ii.​ some classes can’t be reused, for example: AbstractRestHandler
iii.​ although a lot of classes can be reused, those classes are designed

for runtime (their package name is org.apache.flink.runtime.rest.xx).
It’s better to move REST server common classes in flink-runtime module to a separate
module (named flink-rest-server) to solve the above questions in future?

2.​ implements a totally new SQL client REST server
●​ advantages

i.​ no need to consider the problems caused by code reuse

●​ disadvantages
i.​ there are two REST server implementations in Flink

3.​ have any other better ideas ?

We tend to choose the first approach! The class architecture of REST server is

(the components with gray color can be reused)

Executor

LocalExecutor is the implementation of the Executor interface for embedded mode now, but
according to the design above, a RemoteExecutor is no longer needed for gateway mode.
Only one executor is needed to communicate with Flink and other external systems in
gateway.

CommandParser
After the architecture of embedded and gateway mode unified, the CommandParser in
gateway can be refactored. Currently, command parser is implemented through regular
expression matching which fails to support some SQL queries. (e.g. FLINK-15175)

●​ the workflow of command parsing after refactor

https://issues.apache.org/jira/browse/FLINK-15175

Deployment
We will deploy the SQL client gateway as an independent service like HiveServer2.

REST API
The REST API is versioned, with specific versions being queryable by prefixing the url with

the version prefix. Prefixes are always of the form v[version_number]. For example, to

access version 1 of /foo/bar one would query /v1/foo/bar.

Querying unsupported/non-existing versions will return a 404 error.

The response is always a JSON type data.

It’s also better to provide an unified REST API for clients to execute all statements (e.g.
SELECT xx, SHOW xx, SET xx, etc. see link) rather than different REST APIs to execute
different kinds of statements. Otherwise, users (especially users who manipulate a Flink
cluster through REST API) have to classify the statements by himself (maybe need to parse
the statement) and call the specific API for the specific statement.

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview

Currently, the REST APIs will be marked as Internal.

Error handling

When the REST API encounters an error, it will return a JSON object containing only one

field “errors”, a string array in which the strings are the details of the errors. This behavior

reuses the error handling in the original Flink REST server code. We will not apply additional

“error” fields in the following APIs.

Currently, the HTTP response code when encountering an error will be either 400 BAD

REQUEST (if the parameters provided by the user is invalid) or 500 INTERNAL SERVER

ERROR (otherwise).

Create a session

/v1/sessions

Verb: POST Response code: 200 OK

Create a new session with a specific planner and execution_type. A specific properties

could be given for current session which will override the gateway's default properties.

Request body {

 "session_name": "", # optional

 "planner": "old"/"blink", # required, case insensitive

 "execution_type": "batch"/"streaming", # required, case insensitive

 "properties": { # optional, properties for current session

 "key": "value"

 }

}

Response body {

 "session_id": "", # if session is created successfully

}

Trigger session heartbeat

/v1/sessions/:session_id/heartbeat

Verb: POST Response code: 200 OK

Trigger heartbeat to tell the server that the client is active, and to keep the session alive as

long as configured timeout value.

If a session does not receive a heartbeat or any other operations, the session will be

destroyed when the timeout is reached.

Request body {}

Response body {}

Execute a statement

/v1/sessions/:session_id/statements

Verb: POST Response code: 200 OK

Execute a statement which could be DQL, DDL(only CREATE/ALTER/DROP

DATABASE/TABLE/VIEW xx are supported), DML(only INSERT xx are supported),

SET/RESET, SHOW/EXPLAIN/DESCRIBE, USE.

The SET xx=yy statement will override/update the TableConfig held by current session,

and the RESET statement will reset all properties set by SET xx=yy statement.

The USE MODULE/CATALOG/DATABASE xx statement will update the default

module/catalog/database in TableEnvironment held by current session.

The statement must be a single command, otherwise the server will throw an exception.

The execution will return a response which is a JSON type data. If the statement

execution fails, the errors field in response JSON data will be filled with messages.

Otherwise, the result will contain columns and data. The columns field is an array type and

each value is a map which contains column name and column type. The data field is also

an array type, and each value is a row which is an array type.

please refer to the appendix for more detail about column name and column type.

For SELECT/INSERT statements, only a Flink job is submitted, and the response contains

the job_id which you can use to get the result (refer to Fetch result).

For other statements, the response contains the complete result data.

We use the same API to run all statements because otherwise users have to determine

what statements they are submitting by themselves. Under our design, users can tell

immediately what they have submitted from the JSON object and perform specific actions.

Note:

It's a useful feature that a statement contains multiple commands. (scenario: compiling

multiple queries into a single job, or executing a job through sql file) However, there are

many unclear things to define for streaming because the streaming job may be

long-running. such as:

●​ could the statement contain an INSERT query and a SELECT query both ?

●​ could an INSERT query be in the middle of a statement ?

●​ the execution order for multiple command may be different for batch and stream.

Batch job could be executed sequentially. however, if there are multiple INSERT

queries for stream job, sequential execution order is not allowed.

●​ how to define which queries could be compiled into a single job ?

●​ etc.

Request body {

 "statement": "", # required

 "execution_timeout": "" # execution time limit in milliseconds,

optional, but required for stream SELECT ?

}

Response body {

 "statement_types": ["",], # defined in the appendix. This helps the

clients do different things on each type. (e.g. for SELECT, a separate

view will be displayed). Currently, there is only one result because

only one statement is supported now

 "results": [# if the execution is successful. currently, there is only

one result.

 {

 "columns": [

 {

 "name": "",

 "type": # string value of LogicalType

 },

],

 "data": [

 ["value",], # a row data

]

 },

]

}

the workflow of executing a statement:

Fetch result

/v1/sessions/:session_id/jobs/:job_id/result/:token

Verb: GET Response code: 200 OK

Fetch a part of result for a flink job execution. If the result data is too large or the result is

streaming, we can use this API to get a part of the result at a time. The initialized value of

token is 0. The token in the next request must be the same as the token in the current

request or must be equal to token (in the current request) + 1, otherwise the client will get

an exception from server. If multiple requests are executed with the same token, the result

is the same. This design makes sure the client could get the result even if some errors

occur in client. The client can get the next part of result using

/v1/sessions/:session_id/jobs/:job_id/result/:{token+1} (which is the value of

next_result_uri in the response data). If next_result_uri is empty, no more data is

remaining in the server.

The server could drop the old data before current token. (The client successfully obtains

those data)

We will introduce fetch_size or max_wait_time (to reach the fetch_size) for optimization in

future.

The execution will return a response which is a JSON type data. If the statement

execution fails, the errors field in response JSON data will be filled with messages.

Otherwise, the result will contain columns, data and change_flags. The columns field is an

array type and each value is a map which contains column name and column type. The

data field is also an array type, and each value is a row which is an array type. The

change_flags field is an array type and each value indicates whether the row

(corresponding to the position) is append data (true) or delete data (false) for the

streaming SELECT. The array length of change_flags and data must be equal.

please refer to the appendix for more detail about column name and column type.

Request body {}

Response body {

 results: [# currently, there is only one result now. If multiple queries

is executed in a single job, there are many results.

 {

 "columns": [# if the execution is successful

 {

 "name": "",

 "type": # string value of LogicalType

 },

],

 "data": [

 ["value",], # a row data

],

 "change_flags": [

 true/false, # append(true)/delete(false) row for streaming

SELECT

],

 },

],

 "next_result_uri":

/v1/sessions/:session_id/jobs/:job_id/result/:{token+1} # if not empty,

uses this uri to fetch next part of result, else there is no more result.

}

the workflow of fetching result:

Get job status

/v1/sessions/:session_id/jobs/:job_id/status

Verb: GET Response code: 200 OK

Get the status of a running job.

If the session is expired, the server will throw "session not found" exception.

If the job is finished, the server will throw "job not found" exception.

Request body {}

Response body {

 "status": "" # refer to JobStatus

}

Cancel a job

/v1/sessions/:session_id/jobs/:job_id

Verb: DELETE Response code: 200 OK

https://github.com/apache/flink/blob/master/flink-core/src/main/java/org/apache/flink/api/common/JobStatus.java

Cancel the running job.

If the session is expired, the server will throw "session not found" exception.

If the job is finished, the server will throw "job not found" exception.

Request body {}

Response body {

 "status": "CANCELED" # if cancel successfully

}

Close a session

/v1/sessions/:session_id

Verb: DELETE Response code: 200 OK

close a session, release related resources including operations and properties

Request body {}

Response body {

 "status": "CLOSED" # if cancel successfully

}

Get info

/v1/info

Verb: GET Response code: 200 OK

Get meta data for this cluster

Request body {}

Response body {

 "product_name": "Apache Flink",

 "version": "1.11" # Flink version

}

The typical process for executing a query

// 1. open session
POST /v1/sessions

// 2. parse response, get session_id

// 3. submit a non-SELECT/INSERT statement
POST /v1/sessions/:session_id/statements

// 4. parser response, get result data

// 5. submit a SELECT/INSERT statement
POST /v1/sessions/:session_id/statements

// 6. parser response, get job_id and next_result_uri

// 7 fetch first part of result
GET /v1/sessions/:session_id/jobs/:job_id/result/:token

// 8. parse response and get result.
// trigger the next request to fetch the next part of result if next_result_uri is not empty,
otherwise the client has got all the data.

// 9. close the ssion
DELETE /v1/sessions/:session_id

Execute a statement without session
(To be discussed. This is mainly designed for testing)

/v1/statements/

Verb: POST Response code: 200 OK

Submit a statement without session, and the response contains result data (execute

synchronously and return the results). This API could be used for testing.

The statement must be DDL/SELECT/INSERT/SHOW/EXPLAIN/DESCRIBE and the

INSERT/SELECT is not supported on stream now.

Request body {

 "statement": "", # required

 "planner": "old"/"blink", # required, case insensitive

 "execution_type": "batch"/"streaming", # required, case insensitive

 "properties": { # optional

 "key": "value"

 },

 "execution_timeout": "" # execution time limit in milliseconds,

optional, but required for stream SELECT ?

}

Response body as same as Fetch result except that there is no next_result_uri part

JDBC on Batch
As JDBC interface is designed for databases, its semantics on streaming is very limited, so

currently we will not support streaming JDBC interfaces.

We will create a new sub-module named flink-jdbc-driver in flink-table module (flink-jdbc

already exists in flink-connectors), and build a standalone jdbc driver jar.

For detailed JDBC design, see this document.

Connection
The JDBC connection URL is something like

jdbc:flink://localhost:8083?planner=blink

https://docs.google.com/document/d/13KP2nEsCMmScQ9LAAxwolQm1BMx7PJ39Db3N7AQ9-oc/edit?usp=sharing

Currently supported methods: createStatement, close, isClosed,

setCatalog, getCatalog, getMetaData, setSchema, getSchema

Statement
Note that one Statement object can only open up one ResultSet at the same time, so if
another execution method is called from another thread when one execution method is
running, the running execution method will be implicitly cancelled.
Currently supported methods: executeQuery, executeUpdate, execute,
cancel, close, getMaxRows, setMaxRows, getQueryTimeout,
setQueryTimeout, getResultSet, getUpdateCount, getMoreResults,
getResultSetType, getConnection, isClosed

ResultSet
One concern about fetching the results of the queries is how shall we fetch them.

●​ Shall we use accumulators so that all the results are sent to the job manager after
the query is finished? If so, it may put a heavy burden on the job manager if the result
set is large or if there are many queries running in the cluster. Also, the memory of
job manager may not be enough to hold all the results.

●​ Shall we store the result in an external storage system like Kafka? If so, it’s very likely
that users don’t have Kafka on their clusters.

●​ Shall we create a new “result server” to forward the results to the clients in an
iterative style? If so, what if the gateway and the task managers can’t talk directly to
each other, and we cannot determine if the current batch of result is the last batch.

Currently supported methods: next, close, wasNull, getString, getBoolean,
get…, getMetaData, findColumn, isBeforeFirst, isFirst, getRow,
setFetchDirection, getFetchDirection, getType, rowUpdated,
rowInserted, rowDeleted, getStatement

ResultSetMetaData
These results are derived from the response json of GET

/v1/sessions/:session_id/jobs/:job_id/result/:token

Currently supported methods: getColumnCount, isCaseSensitive,

isSearchable, isNullable, getColumnLabel, getColumnName,

getPrecision, getScale, getColumnType, getColumnTypeName,

getColumnClassName

DatabaseMetaData
We lazily call GET /v1/info to fetch some of the meta data

Currently supported methods (Whether to support these methods is still under discussions.

We may remove supports for some methods during the discussion):

allTablesAreSelectable, getURL, nullsAreSortedHigh,

nullsAreSortedLow, nullsAreSortedAtStart, nullsAreSortedAtEnd,

getDatabaseProductName, getDriverName, getDriverVersion,

getDriverMajorVersion, getDriverMinorVersion,

getIdentifierQuoteString, getSQLKeywords,

supportsAlterTableWithAddColumn, supportsAlterTableWithDropColumn,

supportsColumnAliasing, supportsTableCorrelationNames,

supportsDifferentTableCorrelationNames,

supportsExpressionsInOrderBy, supportsOrderByUnrelated,

supportsGroupBy, supportsGroupByUnrelated,

supportsGroupByBeyondSelect, supportsLikeEscapeClause,

supportsNonNullableColumns, supportsOuterJoins,

supportsFullOuterJoins, supportsLimitedOuterJoins, getSchemaTerm,

getCatalogTerm, isCatalogAtStart, getCatalogSeparator,

supportsCatalogsInDataManipulation,

supportsCatalogsInTableDefinitions,

supportsSchemasInDataManipulation,

supportsSchemasInTableDefinitions,

supportsSubqueriesInComparisons, supportsSubqueriesInExists,

supportsSubqueriesInIns, supportsSubqueriesInQuantifieds,

supportsCorrelatedSubqueries, supportsUnion, supportsUnionAll,

getMaxColumnNameLength, getTableTypes, getPrimaryKeys,

getTypeInfo, supportsResultSetType, getConnection,

getDatabaseMajorVersion, getDatabaseMinorVersion,

getJDBCMajorVersion, getJDBCMinorVersion, getFunctions

Compatibility, Deprecation, and Migration
Plan
This FlLP will guarantee alignment with the functionality of old embedded mode, and does

not involve any old public user interfaces. So there is no Compatibility, Deprecation, and

Migration.

Implementation Plan

1.​Basic features

●​ add basic web server

●​ supports basic REST API

●​ supports Session & Session Management

●​ supports Basic SessionOperations

●​ supports CLI Client connecting to REST server

○​ supports basic commands

○​ supports submitting batch job & display results

○​ supports submitting stream job & display results

●​ supports loading jar files

●​ refactor embedded mode

2.​Supports JDBC on batch
●​ supports basic methods mentioned above

3.​Refactor Command Parser
●​ implements new command parser
●​ remove old command parser

Rejected Alternatives
●​ port HiveServer2 to Flink, like Spark thrift server. The advantage of this approach is

that we can reuse the most code of HiveServer2 except operation part which should

be changed to connect to Flink cluster instead of Hive cluster. However the

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview
https://github.com/apache/spark/tree/master/sql/hive-thriftserver

HiveServer2 does not support REST API, and is hard to extend support for

streaming. If we change the Thrift protocol, the new protocol may be incompatible

with old ones.

To be discussed in future
1.​ supports thrift server ? (FLINK-15017)
2.​ supports JDBC on streaming ？
3.​ supports more features on REST API, e.g. pause/resume streaming jobs
4.​ supports authorization management
5.​ supports gateway persistence and high availability

Appendix
In sync with JDBC interface

●​ green: Can be submitted by Statement#executeQuery

●​ yellow: Can be submitted by Statement#executeUpdate

Command Column Name Column Type value

submit

SELECT

query

job_id VARCHAR the flink job id corresponding the

SELECT query

fetch

SELECT

result

(selected field

names)

(selected field

types)

(selected rows)

DDL, SET,

RESET, USE

affected_row_

count

BIGINT 0 (according to jdbc

Statement#executeUpdate)

submit DML

query

job_id VARCHAR the flink job id corresponding the DML

query

https://issues.apache.org/jira/browse/FLINK-15017

fetch DML

result

affected_row_

count

BIGINT the number of affected rows (only one

row)

for stream job, the value is always

java.sql.Statement.SUCCESS_NO_I

NFO = -2

SHOW

MODULES

modules VARCHAR module names in current session

SHOW

CATALOGS

catalogs VARCHAR catalog names in current session

SHOW

DATABASE

databases VARCHAR database names in current catalog

SHOW

TABLES

tables VARCHAR table names in current catalog and

database

type VARCHAR type of table (TABLE or VIEW)

SHOW

FUNCTIONS

functions VARCHAR function names in current session

DESCRIBE

xx
table_schema VARCHAR table schema JSON value

(It’s hard to convert TableSchema to
table format, because watermark spec
and regular columns are never in the
same row)

EXPLAIN explanation VARCHAR explain result (only one row)

Statement types:

Command Statement Type

SELECT SELECT

INSERT INSERT

CREATE TABLE CREATE_TABLE

CREATE VIEW CREATE_VIEW

DROP TABLE DROP_TABLE

DROP VIEW DROP_VIEW

SHOW MODULES SHOW_MODULES

SHOW CATALOGS SHOW_CATALOGS

SHOW DATABASE SHOW_DATABASE

SHOW TABLES SHOW_TABLES

SHOW FUNCTIONS SHOW_FUNCTIONS

DESCRIBE DESCRIBE

EXPLAIN EXPLAIN

SET SET

RESET RESET

	FLIP-91: Support SQL Client Gateway
	Motivation
	Public Interfaces
	Proposed Changes
	General Architecture
	Component Description

	●​CLI Client：client that receives user commands and displays results returned from gateway. The specific planner (old or blink) and the specific execution type (batch or stream) must be given when CLI client is created. (corresponding to scenario 1)
	●​User Program: user program that could manipulate the Flink cluster based on REST API. (corresponding to scenario 2)
	●​JDBC Client: client that could manipulate the Flink cluster based on JDBC interface. (corresponding to scenario 3, like beeline, tableau)
	●​Flink JDBC Driver: the implementation of JDBC interface based on REST API. (it means the communication protocol is REST API) Only batch is supported now because JDBC interface is defined for traditional database.
	●​REST Server: a web server could receive commands from clients and execute sql jobs on flink cluster
	○​CommandParser: parse user commands itself (few commands), or calls flink-sql-parser. One command corresponds to one SessionOperation.
	○​Session: similar to HTTP Session, which could maintain user identity and store user-specific data during multiple request/response interactions between a client and REST Server. A session preserves:
	■​Information about the session itself (session identifier, creation time, time last accessed, etc.)
	■​Actions that the session could have (executeStatement, etc)
	○​SessionManager: manage sessions, including
	■​store all sessions
	■​create a session when a client connects the server
	■​remove a session when a client closes its session
	■​periodically remove expired sessions
	■​limit the max number of living sessions to avoid OOM in Gateway
	○​SessionOperation: a specific representation of a command, which could execute (sync or async) the command and return the executing result. A SessionOperation is created in a specific session, and when the session is expired, the living operations belonging to the session will also be destroyed.
	○​SessionOperationFactory: create a new session operation based on command
	○​AuthorizationManager: manage authorization which is not involved in this design
	●​Executor: a gateway for communicating with Flink and other external systems
	Gateway Mode
	Embedded Mode

	
	Gateway
	REST Server
	Executor
	CommandParser
	Deployment

	REST API
	Error handling
	Create a session
	Trigger session heartbeat
	Execute a statement
	Fetch result
	Get job status
	Cancel a job
	Close a session
	Get info
	The typical process for executing a query
	Execute a statement without session

	JDBC on Batch
	Connection
	Statement
	ResultSet
	ResultSetMetaData
	DatabaseMetaData

	Compatibility, Deprecation, and Migration Plan
	Implementation Plan
	1.​Basic features
	2.​Supports JDBC on batch
	3.​Refactor Command Parser

	Rejected Alternatives
	To be discussed in future
	Appendix
	In sync with JDBC interface
	●​green: Can be submitted by Statement#executeQuery
	●​yellow: Can be submitted by Statement#executeUpdate
	Command
	Column Name
	Column Type
	value
	submit SELECT query
	job_id
	VARCHAR
	the flink job id corresponding the SELECT query
	fetch SELECT result
	(selected field names)
	(selected field types)
	(selected rows)
	DDL, SET, RESET, USE
	affected_row_count
	BIGINT
	0 (according to jdbc Statement#executeUpdate)
	submit DML query
	job_id
	VARCHAR
	the flink job id corresponding the DML query
	fetch DML result
	affected_row_count
	BIGINT
	the number of affected rows (only one row)
	for stream job, the value is always java.sql.Statement.SUCCESS_NO_INFO = -2
	SHOW MODULES
	modules
	VARCHAR
	module names in current session
	SHOW CATALOGS
	catalogs
	VARCHAR
	catalog names in current session
	SHOW DATABASE
	databases
	VARCHAR
	database names in current catalog
	SHOW TABLES
	tables
	VARCHAR
	table names in current catalog and database
	type
	VARCHAR
	type of table (TABLE or VIEW)
	SHOW FUNCTIONS
	functions
	VARCHAR
	function names in current session
	DESCRIBE xx
	table_schema
	VARCHAR
	table schema JSON value
	EXPLAIN
	explanation
	VARCHAR
	explain result (only one row)
	
	Command
	Statement Type
	SELECT
	SELECT
	INSERT
	INSERT
	CREATE TABLE
	CREATE_TABLE
	CREATE VIEW
	CREATE_VIEW
	DROP TABLE
	DROP_TABLE
	DROP VIEW
	DROP_VIEW
	SHOW MODULES
	SHOW_MODULES
	SHOW CATALOGS
	SHOW_CATALOGS
	SHOW DATABASE
	SHOW_DATABASE
	SHOW TABLES
	SHOW_TABLES
	SHOW FUNCTIONS
	SHOW_FUNCTIONS
	DESCRIBE
	DESCRIBE
	EXPLAIN
	EXPLAIN
	SET
	SET
	RESET
	RESET

