Assignment 1

PM1/04 (Group B)

(Symbols have their usual meanings)

1. (a) What do you mean by reparametrization of a curve? Prove that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
(b) Find the unit speed reparametrization of a logarithmic spiral $\gamma(t)=\left(e^{k t} \cos t, e^{k t} \sin t\right)$, where k is a non-zero constant.
2. Let $\gamma(t)$ be any regular curve in R^{3} with nowhere vanishing curvature. Then denoting $\frac{d}{d t}$ by a dot, prove that its torsion is $\frac{(\gamma \ddot{\times} \gamma) \cdot \ddot{\gamma}}{\|\gamma \ddot{\times} \gamma\|^{2}}$.
3. Find the torsion of the circular helix $\gamma(\theta)=(a \cos \theta, \operatorname{asin} \theta, b \theta), \theta \in R$, where a and b are constants.
4. Define regular curve. Which of the following curves are regular?
(i) $\gamma(t)=\left(\cos ^{2} t, \sin ^{2} t\right)$ for $-\infty<t<\infty$
(ii) $\gamma(t)=(t \cdot \cosh t)$ for $-\infty<t<\infty$.

Find the unit speed reparametrization of regular curve (s).
5. Define the signed curvature κ_{s}. Let $\gamma(s)$ be a unit speed curve and $\varphi(s)$ be the turning angle of γ. Prove that $\kappa_{s}=\frac{d \varphi}{d s}$. Find the signed curvature of the catenary $\gamma(t)=(t, \cosh t)$
6. Let $\gamma(t)$ be a regular curve and λ be constant. The parallel curve γ^{λ} of γ is defined by $\gamma^{\lambda}(t)=\gamma(t)+\lambda n_{s}(t)$. Show that if $\lambda \kappa_{s}(t) \neq 1$, prove that γ^{λ} is a regular curve and its signed curvature is $\frac{\kappa_{s}}{\left|1-\lambda \kappa_{s}\right|}$.
7. State and prove Frenet-Serret equations.
8. Let γ be a unit-speed curve in R^{3} with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
9. Compute $\kappa, \tau, \mathbf{t}, \mathbf{n}$ and \mathbf{b} of the following curve and verify that Frenet-Serret equations are satisfied:

$$
\gamma(t)=\left(\frac{1}{3}(1+t)^{3 / 2},(1-t)^{3 / 2}, \frac{t}{\sqrt{2}}\right),(\mathrm{ii}) \quad \gamma(t)=\left(\frac{4}{5} \cos t, 1-\sin t,-\frac{3}{5} \cos t\right)
$$

Show that the curve in (ii) is a circle, and find its centre, radius and the plane in which it lies.

