Assignment 1

PM1/04 (Group B)

(Symbols have their usual meanings)

- 1. (a) What do you mean by reparametrization of a curve? Prove that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
 - (b) Find the unit speed reparametrization of a logarithmic spiral $\gamma(t)=(e^{kt}cost,e^{kt}sint)$, where k is a non-zero constant.
- 2. Let $\gamma(t)$ be any regular curve in R^3 with nowhere vanishing curvature. Then denoting $\frac{d}{dt}$ by a

 $\frac{(\gamma \ddot{\times} \gamma)\ddot{\cdot} \gamma}{\|\gamma \ddot{\times} \gamma\|^2}$ dot, prove that its torsion is

- 3. Find the torsion of the circular helix $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), \theta \in R$, where a and b are constants.
- 4. Define regular curve. Which of the following curves are regular?

(i)
$$\gamma(t) = (\cos^2 t, \sin^2 t)$$
 for $-\infty < t < \infty$

(ii)
$$\gamma(t) = (t. cosht)$$
 for $-\infty < t < \infty$.

Find the unit speed reparametrization of regular curve (s).

- 5. Define the signed curvature κ_s . Let $\gamma(s)$ be a unit speed curve and $\phi(s)$ be the turning angle of γ . Prove that $\kappa_s = \frac{d\phi}{ds}$. Find the signed curvature of the catenary $\gamma(t) = (t, cosht)$
- 6. Let $\gamma(t)$ be a regular curve and λ be constant. The parallel curve γ^{λ} of γ is defined by $\gamma^{\lambda}(t) = \gamma(t) + \lambda n_s(t)$. Show that if $\lambda \kappa_s(t) \neq 1$, prove that γ^{λ} is a regular curve and its signed curvature is $\frac{\kappa_s}{|1-\lambda\kappa|}$.
- 7. State and prove Frenet–Serret equations.
- 8. Let γ be a unit-speed curve in R³ with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
- 9. Compute κ , τ , **t**, **n** and **b** of the following curve and verify that Frenet–Serret equations are satisfied:

$$\gamma(t) = \left(\frac{1}{3}(1+t)^{3/2}, (1-t)^{3/2}, \frac{t}{\sqrt{2}}\right), \text{ (ii)} \quad \gamma(t) = \left(\frac{4}{5}\cos t, 1-\sin t, -\frac{3}{5}\cos t\right)$$

Show that the curve in (ii) is a circle, and find its centre, radius and the plane in which it lies.