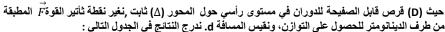

توازن جسم صلب قابل للدوران حول محور ثابت

Equilibre d'un solide en rotation autour d'un axe fixe

Www.AdrarPhysic.Com



(m=100g)


- نشاط تجريي1: إبراز مفعول قوة على دوران جسم:
 في الشكل-1- ثم تمثيل القوى المطبقة على الجزء القابل للدوران للسبورة حول محور(△) رأسي ثابت.
 استثماد:
 - 1. هل للقوة \overrightarrow{f}_1 مقدرة على إدارة الجزء من السبورة حول المحور (Δ) ؟ استنتج.
 - 2. هل للقوة $\overrightarrow{F}_{_{A}}$ و $\overrightarrow{F}_{_{A}}$ المقدرة على إدارة السبورة حول المحور (Δ) ؟ استنتج. ؟
 - 3. -كيف تتغير شدة القوة كلما اقتربنا من المحور (Δ) ؟

نشاط تجريبي 2: عزم قوة لمحور ثابت

ننجز التركيب التجريبي الممثل في الشكل-2-:

مَنْ طَرِيقَ الدَيْنَاتُومُورُ لَتَحْصُونَ عَلَى النوازي، وتغيش المُسَاعَة 6. تدرج النتائج في الجدون									
(N) → F	6	5	4	3	2				
(m) 中 d	2,6	3,12	3,9	2, 5	7,8				
N.m) ← F.d									

- 2. هل توافق النتائج المحصلة نتيجة السؤال -3- من النشاط السابق.
- . عزم قوة $ec{f}$ بالنسبة لمحور (Δ) مقدار ثابت ،يميز مقدار قوة $ec{f}$ على إحداث دوران حول المحور (Δ). تعرف عليه من خلال هذا النشاط

نشاط تجريبي 3: توازن جسم صلب قابل للدوران حول محور ثابت

نعتبر قرصا(D) متجانسا وقابل للدوران حول محور (Δ) يمر من مركزه (الشكل 5).

 F_1 شدتها والنقطة F_1 شدتها منتب عليه في النقطة F_1 شدتها والمنع دوران القرص نثبت عليه في النقطة F_1 شدتها بثبت عليه في النقطة F_1 شدتها والمنتب عليه في توازن تحت تأثير القوى المطبقة عليه . G_1 والمنتب القرص في توازن تحت تأثير القوى المطبقة عليه .

- استثمار:
- . اجرد القوى المطبقة على القرص ؟
- 2. احسب عزم كل قوة بالنسبة للمحور (Δ) ?
- احسب مجموع عزوم القوى المطبقة على القرص .ماذا تستنتج ؟

نعتبر عارضة متجانَّسة مركز قصُورها G وكتلتها M=120g وطولها L=28cm قابلة للدوران بدون احتكاك حول محور ثابت (Δ) . (الشكل-7-)

نثبت جسمان (S_1 و (S_2 لهما نفس الكتلة m=100g في النقطتين S_1 و S_2 يطبقان على العارضة على التوالي القوتين $ec{F}_1$ و $ec{F}_2$ حيد G3 حيد G4 و G5 مين G6 و G6 مين G6 مين G8 و مين G8 و مين G8 و مين التوالي القوتين G8 و مين التوالي القوتين G9 و مين التوالي التوالي القوتين G9 و مين التوالي ا

ولإبقاء العارضة في حالة توازن نثبت في النقطة $_{C}$ دينانومتر $_{D}$ (تشير شدة قوته إلى $_{C}$ - $_{C}$.

- ♦ إستتمار:
- اجرد القوى المطبقة على العارضة ؟
- 2. احسب عزم كل قوة بالنسبة للمحور (Δ).ثم استنتج مجموعها ?
- 3. قارن مجموع عزم القوتين \overrightarrow{F}_1 و \overrightarrow{F}_2 مع عزم القوة \overrightarrow{F}_0 .ماذا تلاحظ \overrightarrow{F}_1

نطبق مزدوجة قوتين على العارضة المرتبطة بالسلك الفلزي ،فتدور هذه الأخيرة بزاوية θ حول المحور (△)الذي يطابق السلك الفلزي ،ندير الأسطوانة المدرجة بنفس الزاوية θ إلى أن تعود العارضة من جديد إلى وضعها البدئي يمكن تغيير الشدة المشتركة F للمزدوجة المطبقة على القضيب أو تغيير المسافة d لهذه المزدوجة من تغيير عزم هذه الأخيرة .

ندون على الجدول التالي النتائج المحصل عليها:

(F(N	(d(m	$M\overrightarrow{F_1}$ F.d (= ($\overrightarrow{F_2}$,	•θ	(rad) θ
0,1	0,04		9	
0,1	0,06		14	
0,2	0,06		28	

Site: www.chtoukaphysique.com Gmail: prof.jenkalrachid@gmail.com Page 1

0,2	0,08	37	
0,3	0,08	55	
0,3	0,10	69	

- 1. أتمم ملأ الجدول أعلاه؟ 2. هل توافق النتائج المحصل عليها في الجدول تعريف عزم قوة ؟ 3. مثل مبيانيا (\vec{F}_2) ((\vec{F}_2) بدلالة (\vec{F}_2) عن خلال المنحنى استنتج العلاقة بين (\vec{F}_2) و (\vec{F}_2) عن خلال المنحنى استنتج العلاقة بين (\vec{F}_2) و (\vec{F}_2)