Практическая работа №3.

Расчет режима резания при заданных условиях фрезерной обработки аналитическим способом и по справочным таблицам

Цель работы:

- 1. Изучить методику назначения режима резания по таблицам нормативов.
- 2. Ознакомиться и приобрести навыки работы с нормативами.

Основные понятия

Фрезерование — один из самых производительных методов обработки. Главное движение (движение резания) при фрезеровании — вращательное; его совершает фреза, движение подачи обычно прямолинейное, его совершает фреза. Фрезерованием можно получить деталь точностью по 6-12 квалитету шероховатостью до Ra = 0,8 мкм. Фрезерование осуществляется при помощи многозубого инструмента — фрезы. Фрезы по виду различают: цилиндрические, торцевые, дисковые, прорезные и отрезные, концевые, фасонные; по конструкции — цельные, составные и сборные.

При торцевом фрезеровании (обработка торцевой фрезой) диаметр фрезы D должен быть больше ширины фрезерования B, т.е. D = (1,25...1,5)B.

Для обеспечения производительных режимов работы необходимо применять несимметричную схему фрезерования (есть симметричная схема), для чего ось заготовки смещается относительно оси фрезы.

При цилиндрическом фрезеровании различают встречное фрезерование, – когда вектор скорости (направление вращения фрезы) направлен навстречу направлению подачи; и попутное фрезерование, когда вектор скорости и направление подачи направлены в одну сторону. Встречное фрезерование применяют для черновой обработки заготовок с литейной коркой, с большими припусками. Попутное фрезерование применяют для чистовой обработки нежестких, предварительно обработанных заготовок с незначительными припусками.

Глубина резания (фрезерования) t во всех видах фрезерования, за исключением торцевого фрезерования и фрезерования шпонок, представляет собой размер слоя заготовки срезаемой при фрезеровании, измеряемый перпендикулярно оси фрезы. При торцевом фрезеровании и фрезеровании шпонок шпоночными фрезами — измеряют в направлении параллельном оси фрезы.

При фрезеровании различают подачу на один зуб S_z [мм/зуб] подачу на один оборот фрезы S_o [мм/об] и минутную подачу $S_{\scriptscriptstyle M}$ [мм/мин], которые находятся в следующем соотношении:

$$S_{M} = S_{O} \cdot n = S_{Z} \cdot Z \cdot n, MM/MUH,$$

где n – частота вращения фрезы, мин⁻¹;

z – число зубьев фрезы.

При черновом фрезеровании назначают подачу на зуб; при чистовом фрезеровании – подачу на один оборот фрезы.

Скорость резания – окружная скорость фрезы, определяется режущими свойствами инструмента. Ее можно рассчитать по эмпирической формуле [2], [3], или выбрать по таблицам нормативов [4], [7].

Пример выполнения расчета

На вертикально-фрезерном станке 6P12 производится торцевое фрезерование плоской поверхности шириной $B=80\,$ мм, длиной $I=400\,$ мм, припуск на обработку $h=1,8\,$ мм. Обрабатываемый материал серый чугун СЧ30 (НВ 220).Заготовка предварительно обработана. Обработка окончательная, параметр шероховатости обработанной поверхности $Ra=3,2\,$ мкм. Необходимо: выбрать режущий инструмент, назначить режим резания с использованием таблиц нормативов, определить основное (технологическое) время.

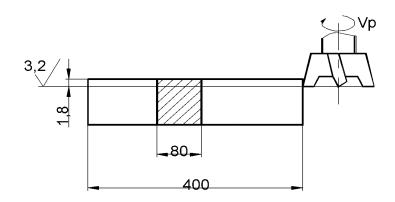


Рисунок 3 - Эскиз обработки

Решение:

1. Выбор инструмента.

Для фрезерования на вертикально-фрезерном станке заготовки из чугуна выбираем торцевую фрезу с пластинками из твердого сплава ВК6 [2] или [3], диаметром $D = (1,25...1,5) \cdot B = (1,25...1,5) \cdot 80 = 100...120$ мм. Принимаем D = 100 мм; z = 10, ГОСТ 9473-83 [2] или [3].

Геометрические параметры фрезы: $\phi = 60^\circ$, $\alpha = 12^\circ$, $\gamma = 10^\circ$, $\lambda = 20^\circ$, $\phi_1 = 5^\circ$. Схема установки фрезы — смещенная.

- 2. Режим резания.
- 2.1. Глубина резания.

Заданный припуск на чистовую обработку срезают за один проход, тогда $t=h=1.8\ \mathrm{MM}$

2.2 Назначение подачи.

Для получения шероховатости Ra=6,3 мкм подача на оборот $S_0=1,0..0,7$ мм/об [4].

Тогда подача на зуб фрезы

$$S_z = \frac{S_0}{Z} = \frac{1,0}{10} = 1,0$$
 _{MM/3y6.}

2.3. Период стойкости фрезы.

Для фрез торцевых диаметром до 110 мм с пластинками из твердого сплава применяют период стойкости

T = 180 мин [4],

2.4. Скорость резания, допускаемая режущими свойствами инструмента.

При обработке серого чугуна фрезой диаметром до 110 мм, с глубиной резания t до 3,5 мм и подачей до 0,1 мм/зуб.

V = 203 м/мин [4],

С учетом поправочных коэффициентов $K_{\rm mv}$ = 1; $K_{\rm nv}$ = 1; при $\frac{B}{D} = \frac{80}{100} = 0.8$; $K_{\rm EV}$ = 1; $K_{\rm \phi v}$ = 1 [4],

$$V = V \cdot K_{mv} \cdot K_{nv} \cdot K_{bV} \cdot K_{\phi} = 203 \cdot 1 = 203 \text{ м/мин.}$$

Частота вращения шпинделя, соответствующая найденной скорости резания

$$n = \frac{1000 \cdot V}{\pi \cdot D} = \frac{1000 \cdot 203}{3,14 \cdot 100} = 643$$
_{MUH⁻¹}.

Корректируем по паспорту станка

 $n_{\text{m}} = 630$ мин-1.

Действительная скорость резания

$$V_p = \frac{\pi \cdot D \cdot n}{1000} = \frac{3,14 \cdot 100 \cdot 630}{1000} = 197,8$$
 _{M/MUH.}

- 2.5. Минутная подача $S_{_{\rm M}}=S_{_{\rm Z}}\cdot z\cdot n=0,1\cdot 10\cdot 630=630$ мм/мин. Это совпадает с паспортными данными станка.
 - 3. Мощность, затрачиваемая на резание.

При фрезеровании чугуна с твердостью до HB229, ширине фрезерования до 85 мм, глубине резания до 1,8 мм, подаче на зуб до 0,13 мм/зуб, минутной подаче до 660 мм/мин

$$N_p = 3.8 \text{ kBt } [4],$$

3.1 Проверка достаточности мощности станка

Мощность на шпинделе станка $N_{\text{шп}} = N_{\text{д}} \cdot \eta$

 N_{π} = 7,5 кВт; η = 0,8 (по паспорту станка)

$$N_{\text{IIII}} = 7.5 \cdot 0.8 = 6 \text{ kBt.}$$

Так как N_{mn} = 6 к $B_T > N_p$ = 3,8 к B_T , то обработка возможна.

4. Основное время

$$T_0 = \frac{L}{S_{_M}}$$
 , MUH

где $L = 1 + 1_1$.

Для торцового фрезерования фрезой диаметром 100 мм, ширине фрезерования 80 мм $l_1 = 23$ мм [4],

$$T_0 = \frac{400 + 23}{630} = 0,67$$
 мин.

Порядок выполнения работы

- 1. Пользуясь методическими указаниями и дополнительной литературой, изучить порядок определения режима резания. Ознакомиться со справочником [7].
- 2. Выполнить эскиз обработки.
- 3. Выбрать режущий инструмент, выполнить эскиз.
- 4. Назначить глубину резания.
- 5. Определить подачу.
- 6. Определить скорость, силу и мощность, затрачиваемую на резание.
- 7. Определить частоту вращения шпинделя и скорректировать по паспорту станка.
- 8. Определить действительную скорость резания.
- 9. Определить основное технологическое время.
- 10. Составить отчет по форме.

Содержание и форма отчета

Выполнить расчет режима резания по таблицам нормативов по заданному варианту. Исходные данные приведены в таблице 3.

Форма отчета

- 1. Наименование работы.
- 2. Цель работы.
- 3. Задание.
- 4. Эскиз обработки.
- 5. Эскиз режущего инструмента
- 6. Расчет параметров режима резания согласно индивидуальному заданию.

Таблица 3 -Варианты задания к работе №3

No	Вид заготовки и ее характеристика	В, мм	1, мм	h, мм	Вид обработки и параметр шероховатости, мкм	Модель станка
1	2	3	4	5	6	7
1	Серый чугун СЧ30, НВ200	100	600	5	Торцовое фрезерование, Ra=12,5	6P12
2	Серый чугун СЧ20, НВ210	150	500	4	Торцовое фрезерование, Ra=1,6	6P12
3	Сталь 38XA, $\sigma_{\scriptscriptstyle B}$ =680 Мпа	80	400	6	Торцовое фрезерование, Ra=12,5	6P12
4	Сталь 35, $\sigma_{\scriptscriptstyle B}$ =360 Мпа	90	480	3,5	Торцовое фрезерование, Ra=1,6	6P12
5	Серый чугун СЧ15, НВ170	50	300	3,5	Цилиндрическое фрезерование, Ra=3,2	6Р82Г
6	Серый чугун СЧ10, HB160	80	250	1,5	Цилиндрическое фрезерование, Ra=3,2	6Р82Г
7	Сталь 40XH, о _в =700 Мпа	70	320	4	Цилиндрическое фрезерование, Ra=12,5	6Р82Г
8	Сталь Ст3, $\sigma_{\scriptscriptstyle B}$ =600 Мпа	85	600	1,5	Цилиндрическое фрезерование, Ra=3,2	6Р82Г
9	Сталь 40X, $\sigma_{\scriptscriptstyle B}$ =750 Мпа	10	100	5	Фрезеровать паз, Ra=6,3	6P12
10	Сталь Ст5, $\sigma_{\scriptscriptstyle B}$ =600 Мпа	12	80	8	Фрезеровать паз ,Ra=6,3	6P12
11	Серый чугун СЧ20, НВ180	20	120	10	Фрезеровать паз ,Ra=6,3	6P12

	G V GTT00	1	1			
12	Серый чугун СЧ20, НВ200	15	75	8	Фрезеровать паз ,Ra=6,3	6Р82Г
13	Сталь 20X, _{ов} =580 Мпа	8	110	8	Фрезеровать паз ,Ra=6,3	6P82Γ
14	Сталь 50, _{ов} =750 Мпа	12	120	6	Фрезеровать паз ,Ra=6,3	6Р82Г
15	Бронза Бр АЖН 10-4 НВ170	100	300	4	Торцовое фрезерование, Ra=12,5	6P12
16	Латунь ЛМцЖ 52-4-1, HB220	60	180	1,5	Торцовое фрезерование, Ra=1,6	6P12
17	Серый чугун СЧ30, НВ220	180	200	4,5	Торцовое фрезерование, Ra=12,5	6P12
18	Серый чугун СЧ20, HB220	110	280	2,5	Торцовое фрезерование, Ra=3,2	6P12
19	Сталь 30XH3A, σ _в =800 Мпа	80	320	5	Цилиндрическое фрезерование, Ra=12,5	6Р82Г
20	Сталь 30XH, _{ов} =780 МПа	115	300	3	Цилиндрическое фрезерование, Ra=3,2	6Р82Г
21	Сталь 45, _{ов} =650 МПа	40	280	1,8	Цилиндрическое фрезерование, Ra=1,6	6Р82Г
22	Сталь 20, $\sigma_{\scriptscriptstyle B}$ =500 МПа	35	400	3,5	Цилиндрическое фрезерование, Ra=6,3	6Р82Г
			,			
23	Силумин АЛ4, НВ50	55	250	4	Торцовое фрезерование, Ra=6,3	6P12
24	Сталь 30XM, _{ов} =950 МПа	70	310	4,5	Торцовое фрезерование, Ra=12,5	6P12
25	Сталь 18ХГТ, $\sigma_{\scriptscriptstyle B}$ =700 МПа	85	350	2,5	Торцовое фрезерование, Ra=3,2	6P12
26	Чугун ВЧ60, НВ250	120	300	5	Торцовое фрезерование, Ra=12,5	6P12
27	Сталь 50, σ _в =900 МПа	60	250	6	Торцовое фрезерование, Ra=6,3	6P12
28	Чугун КЧ60, НВ169	200	450	5,5	Торцовое фрезерование, Ra=3,2	6P12
29	Сталь 18ХГТ, $\sigma_{_{\rm B}}$ =700 МПа	85	300	4,5	Цилиндрическое фрезерование, Ra=12,5	6Р82Г
30	Чугун ВЧ38, НВ170	65	200	3	Цилиндрическое фрезерование, Ra=3,2	6Р82Г