

Department of Computer Science and Engineering

The Chinese University of Hong Kong

CSCI 4999 Final Year Project II

TAO2203

Luminate - Web Annotation Tool

Written by

WILLIANTO, Angelica (1155136022)

Supervised by Prof. Yufei Tao

19 April 2023

Table of Contents
Abstract​ 4
Acknowledgements​ 5
1. Introduction​ 6

1.1 Motivation​ 6
1.2 Background​ 8
1.3 Significance of the project​ 8
1.4 Objective​ 9

2. Design​ 10
2.1 Sequence Diagram​ 10

2.1.1 Basic Features​ 10
2.1.2 Social Annotation Feature​ 11

2.2 Basic Features​ 12
2.2.1 User Registration​ 12
2.2.2 User Login​ 12
2.2.3 Save and Unsave Page​ 13
2.2.4 Highlight Items and Save​ 15
2.2.5 Delete Highlights​ 17
2.2.6 Add Annotations​ 18
2.2.7 Delete and Edit Annotations​ 19
2.2.8 View saved pages and highlights​ 20
2.2.9 Search saved pages​ 20

2.3 Social Annotation Features​ 21
2.3.1 Set Highlights and Annotations as Public or Private​ 21
2.3.2 Follow and Unfollow Users​ 21
2.3.3 View Public Annotations of Followed Users​ 22

3. Technical Specifications​ 23
3.1 Tech Stack​ 23

3.1.1 Manifest V3​ 24
3.1.2 ReactJS​ 26
3.1.3 TypeScript​ 26
3.1.4 NextJS​ 27
3.1.5 TailwindCSS​ 27
3.1.6 Webpack​ 28

2

3.1.7 Firebase​ 29
3.2 Project Architecture​ 30

4. Implementation​ 31
4.1 Chrome Extension Architecture​ 31
4.2 Next.js Implementation​ 34
4.3 Database Model​ 36
4.4 Recursive Highlighting​ 37
4.5 Dynamic Webpage Detection​ 41

5. Division of Labor​ 43
5.1 Work Distribution​ 43
5.2 Individual Contribution (Angelica)​ 44

6. Conclusion​ 45
7. References​ 47

3

Abstract
Online research and information consumption has become a major part of our

daily lives, whether for leisure or for work. With the excessive amount of

information on the internet, capturing, managing, and sharing information via

annotation becomes crucial. People continue to rely on the time-consuming

process of copying and pasting links and text. This way of managing information

remains largely inefficient and limits opportunities for collaboration and interactive

learning. We need a tool that can streamline the annotating workflow and foster a

collaborative learning environment.

Our solution to this is a web annotation and social collaboration tool named

Luminate. Luminate is a browser extension that gives users the ability to highlight

text, add their own personal annotations, and share insights on any webpage.

Highlights and notes can also be viewed through the Luminate Web App. Users

can set their annotations as public or private, and follow other users to view their

shared annotations. Using Luminate, users can retain their highlighted text and

notes as long as the extension is activated. This provides users with a tool to

manage, organize, access, and collaborate on their online information in an easier

and more efficient way. Our app will be beneficial to a variety of people, including

students, researchers, teachers, and others who regularly consume a large

amount of online information and seek to engage in collaborative learning

experiences.

4

Acknowledgements
We would like to extend our sincere gratitude to our supervisor Prof. Tao Yufei for

his guidance and kind support throughout the course of this project.

We would also like to thank everyone who helped us with the project or read this

report.

5

1. Introduction

1.1 Motivation

Whether at home or at work, a large portion of our information consumption and

research has shifted online. A lot of our time is now spent looking into information

online. The internet has become an invaluable resource for us to access

information quickly and easily. We can find information on almost any topic, from

the most obscure to the most popular. We browse through websites for topics

such as COVID-19, news reports, work projects, travel, shopping, school

assignments, etc.

As technology continues to evolve, the amount of online information available to

us grows exponentially. According to siteefy [1], there are currently around 1.14

billion websites, and 252,000 new websites are created every single day. Finding

the right information in this massive amount of information is difficult. Once we

find information, we must not lose track of it.

Moreover, the learning process is often enriched when we can share our insights

with others and learn from their perspectives. Traditional methods of annotating

web content do not facilitate easy sharing or collaboration, limiting the potential

for interactive learning experiences.

A simple method to keep track of all the information we would like to keep is using

the bookmark function that is available in all browsers. However, bookmarking is

not enough. Without the content and note information, it is hard to remember why

we marked down a link a month ago and which part of the website is important.

6

Hence, a more detailed way to take notes from a website is by copying the text

and pasting it into a cloud-based note-taking app or a text editor such as OneNote

or Microsoft Word. The step is usually as follows:

Figure 1.1.1 Common Annotating Workflow

There are three concerns regarding this method:

1.​ Inefficient: This process of gathering information remains largely

time-consuming and involves a lot of tedious labour. There are at least three

steps involved required to complete a single note.

2.​ Loss of context details: While reviewing this note, we can only read the

sentence we pasted into the document, rather than the whole webpage. If

we want to understand the sentence in the whole context of the webpage,

we have to enter the link and scroll to the exact location of this sentence.

This whole process can be made more efficient.

3.​ Limited collaboration: The traditional annotating workflow is lacking in

features that allow users to share their insights and learn from others'

perspectives, ultimately limiting the potential for interactive and

collaborative learning experiences.

We need a tool that makes it easy to annotate information on webpages, removes

all the friction of copy-pasting links and text on a note app, and facilitates sharing

and collaboration among users. A tool that saves the exact information you need

7

on a webpage, keeps track of the location of the webpage, and fosters interactive

learning experiences by allowing users to share their insights with others.

1.2 Background

Every time we read, we have a habit of highlighting and writing notes in the

margin. Additionally, we often engage in discussions and share our insights with

others to enhance our understanding of the subject matter. Although highlighting,

writing notes, and sharing insights in the margins of a text is simple on paper and

in print, replicating the experience online remains tricky. A web annotation tool

with social annotation features allows users to highlight text, write notes, and

share insights as they browse the web, as they do on paper.

When we highlighted some text from the e-book on iBooks and the Kindle, we

greatly enjoyed the user experience, so we wanted to recreate the user

experience, but for web pages instead of books. Additionally, we thought the

Google Docs commenting and collaboration features could also be replicated and

incorporated into our web annotation tool. This would create an interactive

learning environment where users can not only annotate web content but also

share their annotations with others, fostering collaboration and enriching their

online experience.

1.3 Significance of the project

We are building a web annotation and social collaboration tool called Luminate.

Luminate is a browser extension that allows users to highlight text, leave notes,

and share insights on any website. The highlights and notes made by the users

will remain on the site as long as the browser extension is turned on. By allowing

users to create, store, and share notes and highlights, we provide a means for

users to organize, manage, access, and collaborate on their online information

more effectively.

8

This tool will be helpful for users who frequently conduct research by reading a

large number of online papers or other online resources, as well as for those who

wish to engage in meaningful discussions and share perspectives with others.

Users can simply highlight relevant parts, add notes, set their annotations as

public or private, and follow other users to view their shared insights. They can

also see everything they marked all at once on our web app, allowing them to

easily access content that is important to them, which can help them in their

studies, work, or even just for entertainment.

By incorporating social annotation features, Luminate fosters interactive learning

experiences and enriches users' online experience, transforming it into a

collaborative learning platform. All in all, Luminate is an innovative tool that aims to

provide a better way to take notes, search, review, and collaborate on notes on the

internet.

1.4 Objective

The overall goal of the project is to design and build a web annotation tool, which

is made up of 2 components: a chrome extension and a web application. Both of

them serve different functionalities.

 Chrome Extension Functionalities Web App Functionalities

●​ Highlight and add notes on any

webpage on the internet

●​ Save these annotations to the cloud

●​ View personal annotations and

friend’s public annotations directly

on the webpage

●​ Set annotations as public or private.

●​ View all saved links and annotations

made

●​ Organize saved links and

annotations

●​ Follow other users and view their

public annotations

9

2. Design

2.1 Sequence Diagram

2.1.1 Basic Features

The sequence diagram below illustrates the basic functionality of our app.

Figure 2.1.1.1 Luminate Basic Feature Sequence Diagram

10

2.1.2 Social Annotation Feature

The sequence diagram below illustrates the social annotation feature of our

app.

Figure 2.1.2.1 Luminate Social Annotation Feature Sequence Diagram

11

2.2 Basic Features

2.2.1 User Registration

Because our app requires storing user activity and data in the cloud, only

registered users are allowed to use our app.

When the user clicks the register button on the main page, they will be taken to

the user registration page. Users will be required to provide their email address

and name and also set a password for their account. Optionally, they can also

upload a profile picture. A confirmation email will then be sent to the user

afterwards, which includes a verification step that they have to complete. After

the verification process, their account is successfully created.

An alternative is to use Google account authentication. Using this, users don’t

have to provide any information, as the data mentioned about will be extracted

from their existing Google account they used to connect.

2.2.2 User Login

Registered users can directly log in to our app by providing their email address

and password, or log in by using their Google account if they previously

registered with their Google account. The information will be passed to the

Firebase Authentication system to determine if the login is successful. If

successful, the user will be directed to the app afterwards.

12

2.2.3 Save and Unsave Page

Figure 2.2.3.1 Save Page Extension Pop-Up UI

The Save Page functionality of our app works the same way as the Bookmark

functionality available in all browsers.

To save a page, users can simply click the Luminate icon in the Google Chrome

Extensions Toolbar. A popup will appear with a ‘Save Page’ button.

After clicking the ‘Save Page’ button, the page will be saved into the user

account’s database. The button will immediately change to ‘Unsave Page’, in

which users can click to unsave the page if they had mistakenly saved a page

they did not mean to.

13

Figure 2.2.3.1 Unsave Page Extension Pop-Up UI

Saved pages can be viewed and deleted through the web app. Deleting a

saved page will also delete the highlights on that webpage from users account.

Figure 2.2.3.2 Delete Page Web App UI

14

2.2.4 Highlight Items and Save

Highlighting items is one of the main features of our app. Users can highlight

items on a webpage by making sure that the extension is active and turning on

the highlighter on that specific webpage.

To turn on the highlighter, there are 2 ways:

●​ Right-click and click the ‘Turn on highlighter’ context menu

Figure 2.2.4.1 Turn on Highlighter Context Menu

●​ Press “Alt + H” on the keyboard

When the highlighter is turned on, the cursor will turn into a highlighter icon as

shown below. Users can then select items on the webpage with the highlighter

cursor, and the items will be highlighted. We try to mimic how highlighters

behave in real life.

15

Figure 2.2.4.2 Highlighter Cursor UI

After turning off the highlighter, the cursor will immediately return to its original

state. To turn off the highlighter, users can:

●​ Right-click and click the ‘Turn off highlighter’ context menu

Figure 2.2.4.3 Turn off Highlighter Context Menu

●​ Press “Alt + H” on their keyboard

Highlighting an item on a webpage will immediately save the page to the app.

16

2.2.5 Delete Highlights

There are 2 ways for users to delete their highlighted items:

●​ Delete highlights on a particular webpage: Users can hover over their

highlight in the webpage, and a popup will appear. The popup has a delete

button which the user can click if they want to delete the selected highlight.

Figure 2.2.5.1 Delete Highlight on a Webpage UI

●​ Delete highlights on our web app: Users can go to the web app and view

their highlights, they can also delete all the highlights that they want to

delete.

Figure 2.2.5.2 Delete Highlight in our Web App

17

2.2.6 Add Annotations

Adding annotations is one of the main features of our app. To annotate an item

on a webpage, users must first highlight the text. A popup will appear when the

user hovers over the highlight.

Figure 2.2.6.1 Annotate on a Webpage UI

Users can click the annotate button, and a text box will appear. Users can then

write notes and save them.

Figure 2.2.6.2 Annotate Text Box UI

The annotation will be associated with the highlighted text.

Figure 2.2.6.3 Annotations UI

18

2.2.7 Delete and Edit Annotations

There are 2 ways for users to delete or edit their annotations:

●​ Delete or edit annotations on a particular webpage: There will be a three

dots button under the annotations on a webpage. Users can click that

button and then click ‘Delete Note’ to delete the annotation.

Figure 2.2.7.1 Delete or Edit Note on a Webpage UI

●​ Delete or edit annotations on our web app: Users can go to the web app

and view their annotations, they can click the three-dot button under the

annotations and click ‘Delete Note’ to delete the annotation.

Figure 2.2.7.2 Delete or Edit Note in our Web App UI

19

2.2.8 View saved pages and highlights

Users’ highlights and annotations can be viewed all at once on our web app.

Figure 2.2.8.1 View Pages and Highlights UI

2.2.9 Search saved pages

Users can search for a query on all of their saved pages using the search bar

at the top of the page.

Figure 2.2.9.1 Search Saved Pages UI

20

2.3 Social Annotation Features

2.3.1 Set Highlights and Annotations as Public or Private

With the new social annotation feature, we provide users with the ability to

control the visibility of highlights and annotations. Users can choose to set

their annotations as public or private based on their preferences. By default, all

annotations are set to private, ensuring that the user's notes are protected and

visible only to them.

To set an annotation as public or private, users can click on the visibility toggle

within the annotation editor on the webpages. Public annotations can be

viewed on the user’s profile page on the webpage or the URL webpage of the

annotation by other users who follow the creator or come across the shared

annotation, thereby fostering collaboration and interactive learning.

2.3.2 Follow and Unfollow Users

Luminate allows users to follow and unfollow other users to create a

personalized network of shared knowledge. By following other users, one can

view public annotations made by those users, promoting collaborative learning

and the exchange of ideas.

To follow or unfollow a user, one can visit the user's profile page and click the

"Follow" or "Unfollow" button. This action will update the user's network, and

any new public annotations made by the followed user will appear in the

follower's feed and on webpages where the followed user has made their

annotations.

21

2.3.3 View Public Annotations of Followed Users

Once a user follows another user, they can view the public annotations made

by the users they follow. This feature encourages users to learn from others'

perspectives and engage in meaningful discussions on various topics.

The public annotations of followed users can be viewed through:

●​ The web app

●​ The webpages where the followed user has made their annotations

In the web app, they can be viewed through the follower’s feed, where a

stream of public annotations made by the followed user is displayed. They can

also be viewed through the followed user’s profile page.

Followed users’ highlights and annotations will also appear on the specific

webpages where they have made annotations.

Figure 2.3.3.1 User Page UI

22

By accessing the perspectives and insights of those they follow, learners

expand their knowledge, expose themselves to new ideas, and foster an

intellectually vibrant community. The annotation feed and profile pages thus

serve as touchpoints for collaborating, debating issues, and building shared

understanding.

3. Technical Specifications

3.1 Tech Stack

Luminate consists of three main components, which include a Chrome extension,

a web application and a back-end to facilitate data storage and user

authentication. Through careful considerations on enhancing the scalability and

robustness of the product, Luminate adopts the following stack:

Chrome Extension

Extension Platform Manifest V3

Front-End ReactJs

TailwindCSS

Utils Webpack

Web Application

Front-End NextJs with Typescript

TailwindCSS

23

Back-End

Database Cloud Firestore

User Authentication Firebase Authentication

3.1.1 Manifest V3

Google Chrome extensions are created using the Manifest V3 application

programming interface (API) [2]. These extension Manifest control how

Chrome extensions communicate with your browser. It provides the browser

with details about the extension, including the most crucial files and potential

functionalities the extension might use [3].

In comparison to the most recent version, Manifest V2, the current version (V3)

of the Chrome Extension platform includes a number of additional features.

The security, privacy, and functionality of the Chrome Extension experience

have been improved with the addition of these new features [3]. The following

are some of the significant updates:

Service workers

Background pages, which are used in Manifest V2, will be swapped out for

Service workers in the next version. The service worker is often in charge

of maintaining the cache, preloading resources, and allowing offline web

pages in standard online applications. All of these functionalities are

included in the new service worker in Manifest V3 and will be accessible

even when offline.

24

Network Request Modification

The new declarativeNetRequest API will take care of network request

adjustments. With the help of this new API, extensions may efficiently and

privately alter and stop network requests. This API's main purpose is:

●​ Instead of intercepting and procedurally altering a request, the plugin

asks Chrome to assess and alter requests on its behalf.

●​ The extension defines a set of guidelines: patterns to match requests

against and actions to do when matched. The browser then adjusts

network requests in accordance with these criteria.

Using this declarative approach dramatically reduces the need for

persistent host permissions.

Remotely Hosted Code

Extensions can import external JavaScript or Wasm files using Manifest V2.

This creates a serious security issue since it makes it simple to inject

malicious scripts into the user's browser. A significant security

enhancement provided by Manifest V3 is the requirement that all script

logic be contained within the extension's package.

Promises

Async/await and promises both now have complete support. A more

complete user experience is made possible by preventing the promise from

being returned when using an API method.

As of January 2023, Manifest V3 has officially been released. By June 2023,

extensions that run Manifest V2 will no longer be supported [5]. Hence, with all

the new features Manifest V3 has to offer and the risk of imminent deprecation,

we believe that it is imperative for Luminate to adopt Manifest V3.

25

3.1.2 ReactJS

Web apps are increasingly being created with more contemporary web

development frameworks rather than traditional JavaScript in recent years.

ReactJS is one prominent contemporary framework. React JS is a JavaScript

library that uses declarative programming and was created and is maintained

by Facebook. It is a compact JavaScript framework that may be used to

construct reusable UI components as well as user interfaces [6]. Important

characteristics include:

Reusable Custom Components

Components are independent and reusable pieces of code. Modularizing

scripts and HTML elements into components encourages code reusability.

Fast Rendering

Initial rendering and re-rendering are the two methods of rendering. When a

component first shows on the screen, initial rendering takes place, and

re-rendering occurs when React has to update the app with new data.

ReactJs enables quick rendering by only updating components that need to

be updated because of changes to the state, parent, context, or hook.

3.1.3 TypeScript

By enabling developers to include type safety in their projects, Typescript

enhances the JavaScript experience [7]. For instance, function parameters and

variables in JavaScript do not specify the kind of desired input. This can take

time and be error-prone because developers must consult the documentation.

When the kinds of data do not match, TypeScript offers the ability to report

errors and allows the user to declare the types of data that are being passed

around within the code.

26

Hence, to adopt only the best development practices with the goal of creating

a robust product, the Luminate web app is built using the TypeScript

framework instead of ordinary JavaScript.

3.1.4 NextJS

We are utilizing NextJs in addition to ReactJs to create our web application. By

managing the tooling and setup required for React, as well as adding extra

structure, functionality, and optimizations for the application, NextJs is a React

framework that enables developers to create web apps more quickly. With the

help of Next.js features, common application requirements, including routing

and data fetching, may be implemented significantly more easily [8].

The ability for developers to create hybrid applications with both statically

generated pages and server-side rendered pages is one of NextJs' key

advantages. Developers can give users basic indexable HTML by using

server-side rendering (SSR), which allows them to render JavaScript code on

the development server. Compared to using client-rendered JavaScript, this

not only makes the page load faster but also increases visibility in the search

engine.

3.1.5 TailwindCSS

Luminate will use TailwindCSS [9] to facilitate its front-end styles for both the

Chrome extension and the web app in place of vanilla CSS. Vanilla CSS

frequently creates a lot of bother because it can be difficult to correlate the

effects of a certain .css style to a particular class in the HTML. This problem is

resolved by TailwindCSS, which develops utility classes with a predefined set

27

of features that make it simple to incorporate pre-existing classes into the

HTML code. More specifically, some of its qualities are as follows:

Customizability

Despite having a default setup, it is easy to alter it and apply our own

unique styles. Colour schemes, styling, spacing, themes, etc. may all be

easily customized thanks to the configuration file. The configuration file

enables easy customization of colour palettes, styling, spacing, themes,

etc. TailwindCSS allows the flexibility to replicate any UI design that any

traditional CSS can do.

Utility Patterns

Tailwind CSS eliminates the hassle of naming classes. The availability of

common utility patterns provides solutions to many issues, including class

specification, class organization, class cascading, and a host of other

issues. Making custom components is made easier by utility classes. With

Tailwind CSS, there is no requirement for hard coding.

Responsive Layouting

The Tailwind CSS framework has a mobile-first strategy by default. The

accessibility of utility classes facilitates the construction of sophisticated

responsive layouts. Every TailwindCSS style can be applied conditionally at

different breakpoints, hence making it easy to build responsive interfaces.

3.1.6 Webpack

Webpack [10] is a module bundler that parses through our code and builds

what it refers to as a dependency graph, which is made up of numerous

modules that our web app would need to work as intended. Then, based on

this graph, it generates a new 'build' package with the absolute lowest number

28

of files needed, frequently just a single bundle of.js and.html files as specified

in the webpack configuration.

Extensions built on top of ManifestV3 follow a strict file structure and only

interpret code written in vanilla HTML, CSS and JavaScript. Since we have

decided to use modern web development frameworks and tools such as React,

TypeScript and TailwindCSS, we utilize webpack to load and compile all of the

code to only a few .js and .html file extensions that are readable by the

Manifest API.

3.1.7 Firebase

Firebase is a Backend-as-a-Service (Baas) that is provided by Google [11]. It

offers a range of tools and services to developers so they can create

high-quality apps and scale as their user base expands. Depending on the

requirements of the project, the Firebase development toolkit can be used

separately. For Luminate, we use Firebase Authentication for user

authentication and account management along with CloudFirestore as our

real-time database for synchronizing user data.

Cloud Firestore
Cloud Firestore is a scalable database from Firebase and Google Cloud for

servers, browsers, and mobile applications [12]. It supports offline support for

mobile and web so developers can create responsive apps that function

regardless of network delay or Internet connectivity. It synchronizes data

among client apps via real-time listeners.

Although Cloud Firestore and MongoDB are both well-known NoSQL

databases, Luminate chooses Cloud Firestore since our application will not

29

require complicated queries or aggregations. Instead, since query scaling

would be essential, Cloud Firestore is a strong fit.

Firebase Authentication
In addition to enabling phone authentication, Google, Twitter, Facebook, and

GitHub logins, Firebase Authentication is a secure authentication system that

offers an end-to-end identity solution [13]. It also comes with an open-source

UI library that simplifies the creation of the numerous auth processes

necessary to provide users with a positive experience. Common flows include

things like login hints, account linking, and password resets.

We choose to use Firebase Authentication not only because of the wide range

of login support and built-in flows, but we find the APIs to be much more

interoperable given that we are making use of Firebase’s Cloud FireStore for

the database.

3.2 Project Architecture

The following architecture diagram demonstrates how all components and the

corresponding tech stack interact with one another:

30

Figure 4.2.1 Application Architecture

We believe that our chosen tech stack and architecture is the best way to go

about developing our product. Factors taken into consideration include the

scalability of the application, ease of implementing new functionalities, quality of

software and the costs of maintenance and service.

4. Implementation

4.1 Chrome Extension Architecture

The execution environment of Chrome extensions is separate from the JavaScript

inside the regular web page. Within this separated environment, any Chrome

extension follows a specific architecture as defined by the Manifest V3 API [14].

Four major components relevant to the development of Luminate include:

31

1.​ Manifest.json File​

The manifest file, with the filename manifest.json, provides the browser with

details about the extension, including the most crucial files and any

potential permissions.​

​

An example of Luminate’s manifest.json

{​

 "name": "Luminate Extension",​

 "description": "An extension to save highlights!",​

 "version": "1.0.0",​

 "manifest_version": 3,​

 "icons": {​

 "16": "icon.png",​

 "48": "icon.png",​

 "128": "icon.png"​

 },​

 "action": {​

 "default_popup": "popup.html",​

 "default_title": "Luminate Extension",​

 "default_icon": "icon.png"​

 },​

 "permissions": ["storage", "tabs", "contextMenus", "unlimitedStorage"],​

 "options_page": "options.html",​

 "background": {​

 "service_worker": "background.js"​

 },​

 "content_scripts": [​

 {​

 "matches": ["<all_urls>"],​

 "js": ["contentScript.js"]​

 }​

],​

 "web_accessible_resources": [​

 {​

 "matches": ["<all_urls>"],​

 "resources": ["images/*.png", "images/*.svg"]​

 }​

],​

32

 "commands": {​

 "toggle-highlight": {​

 "suggested_key": "Alt+H",​

 "description": "Turns highlighter on or off"​

 }​

 }​

}

2.​ Background Scripts​

Without any accompanying web page or even access to any DOM,

background scripts execute in the browser process's background, typically

in response to a content script.​

​

In our case, the background script is responsible for listening to commands

from either keyboard shortcuts or context menus. It will then send the

appropriate instruction to the content script. For example, the key shortcut

“Alt + H” will send a message to the content script to toggle the highlighter

on or off.​

3.​ Content Scripts​

Content scripts give the extension the ability to read and alter a page's

contents by injecting logic into it. JavaScript code that is contained in a

content script is executed while a page is loaded into the browser.​

​

In our case, the content script is responsible for preparing the highlighter,

highlighting and saving the new highlight or annotation to storage. This

script is also responsible for retrieving all highlights for the page and

highlighting the page upon refresh.

4.​ Popup Page​

When a user hits the action icon, an HTML file known as a popup is shown

33

in a small separate window. In Luminate, the Popup page is responsible for

showing details of the current page, as well as highlights and annotations of

the current page, retrieved from storage.

Another major component for the extension would be the storage capability. When

used offline, our extension will store all necessary data using the chrome.storage

API which utilizes the local browser memory. Meanwhile, for cloud storage, we

make use of cloud firestore by Firebase. The following diagram further

demonstrates how all of these components communicate.

Figure 5.1.1 Chrome Extension Architecture

4.2 Next.js Implementation

We have built our web application using Next.js, a popular React framework that

provides a range of benefits for server-side rendering. This approach allows for

faster load times and improved SEO optimization, enhancing the user experience.

Additionally, Next.js provides a range of built-in features that simplify API routing,

making it easy to handle requests from the client in a secure and effective way.

Authentication with getServerSideProps and cookies

To ensure secure user authentication, we store session tokens as cookies in

the user's browser. These tokens are retrieved using Next.js'

getServerSideProps method, which fetches data from the server before

34

rendering the page. This ensures that users are validated on the server-side

before sensitive data is rendered to the user. By using cookies for

authentication, our web application is able to maintain user sessions across

multiple pages, avoiding the need for repeated logins.

API Routes

Our web application also leverages Next.js API routes to handle requests

from the client. These server-side functions can be accessed via HTTP

requests and are designed to provide enhanced security and better

separation of concerns between client and server code. By creating an API

route within the /pages/api directory, we can easily create a range of

server-side functions to handle HTTP requests, simplifying the development

process and improving overall performance.

The API routes used by our webapp is as follows:
-api

 |-highlights

 | |-delete-url.ts

 | |-delete.ts

 | |-edit-annotation.ts

 | |-get-by-user.ts

 | |-toggle-visibility.ts

 |

 |-users

 | |-get-user.ts

 | |-get-users.ts

 | |-register.ts

 | |-follow.ts

 | |-unfollow.ts

 |

 |-feed.ts

35

 |-get-batch-metadata.ts

 |-url-metadata.ts

4.3 Database Model

We implement two collections for our Firestore data model. The two collections

and its content are as follows:

Collection: Users

Field Type Description

userId (pk) String Unique identifier for the user
document.

email String Email address of the user.

displayName String Display name of the user.

displayPicture String URL of the user's display picture.

bio String Short biography of the user.

website String URL of the user's website.

followers Array<String> Array of user IDs that are following
this user.

following Array<String> Array of user IDs that this user is
following.

savedPages Array<String> Array of URLs of pages that this
user has saved.

Collection: Highlights

Field Type Description

uuid (pk) String Unique identifier for the highlight
document.

selectionString String The selected text of the highlight.

36

selectionLength Number The length of the selected text.

container String The HTML element that contains the
selected text.

color String The color of the highlight.

anchor String The anchor position of the highlight.

anchorOffset Number The anchor offset of the highlight.

focus String The focus position of the highlight.

focusOffset Number The focus offset of the highlight.

url String The URL of the webpage where the
highlight was made.

userId String The user ID of the user who made
the highlight.

date Timestamp The timestamp of when the highlight
was made or last updated.

note String The note associated with the
highlight.

isPublic Boolean Boolean value indicating whether
the highlight is public or not.

snapshotHash String The hash value of the snapshot of
the webpage where the highlight
was made.

4.4 Recursive Highlighting

Highlighting text on a web page is tricky as the highlighted text users select can

easily span across multiple different node elements or even at different levels in

the DOM tree. To solve this problem, we figured out that the best way to highlight

and load saved highlights involves a recursive algorithm that iterates that makes

37

extensive use of the built-in web APIs. Our algorithm takes inspiration and is a

more compact version of another open source highlighting tool [15].

The pseudocode of our algorithm is as follows:

** DRIVER FUNCTION **

SELECTION selection = WINDOW.getSelection()
RANGE selectionRange = selection.getRange()
NODE parentContainer = selection.getCommonAncestorContainer()
STRING selectionContent = selection.getString()
INTEGER selectionLength = Length(selectionContent)

// SEE REFERENCE BELOW
NODE startNode = selectionRange.startContainer()
INTEGER startOffset = selectionRange.startOffset()
NODE endNode = selectionRange.endContainer()
INTEGER endOffset = selectionRange.endOffset()

STRING id = RandomID()

CALL Highlight (
​ container: parentContainer,
​ selectionContent: selectionContent,
​ selectionLength: selectionLength,
​ startNode: startNode,
​ startOffset: startOffset,
​ endNode: endNode,
​ endOffset: endOffset,
​ id: id,
​ charsFound: 0,
​ startFound: FALSE
)
** RECURSIVE HIGHLIGHTER **

FUNCTION Highlight (
​ container: NODE,
​ selectionContent: STRING,
​ selectionLength: INTEGER,
​ startNode: NODE,
​ startOffset: INTEGER,

38

​ endNode: NODE,
​ endOffset: INTEGER,
​ id: STRING,
​ charsFound: INTEGER,
​ startFound: BOOLEAN
) RETURNS (charsFound: INTEGER, startFound: BOOLEAN) {
​
​ // Iterate sideways through all elements under same parent node
​ FOR childNode in container AS child {
​
​ ​ // RECURSION END CASE: All characters highlighted
​ ​ IF (charsFound >= selectionLength):
​ ​ ​ RETURN
​ ​
​ ​ // Check if current child is a text node
​ ​ IF (child.nodeType IS NOT TEXT_NODE):
​ ​ ​ // If not a text node, we dive deeper in the DOM tree
​ ​ ​ // by calling the recursive highlight function on the

// current child
​ ​ ​ charsFound, startFound = Highlight(child, ...)
​ ​ ​ RETURN

​ ​ // If text node, we scan if there is any element to highlight
​ ​ let startIndex;
​ ​ // Check if current child is startNode or start has been found
​ ​ IF child == startNode OR startFound {
​ ​ ​ // Enforce startFound to always be True in this case
​ ​ ​ startFound = TRUE
​ ​ ​
​ ​ ​ // If still no characters have been highlighted,

// we are in the startNode
​ ​ ​ // and should start from startOffset
​ ​ ​ IF charsFound > 0:
​ ​ ​ ​ startIndex = 0
​ ​ ​ ELSE:
​ ​ ​ ​ startIndex = startOffset
​ ​ ​
​ ​ ​ // Start iterating through characters starting

// from offset to the rest of characters
​ ​ ​ // of text in current child node
​ ​ ​ FOR (i = startIndex; i < Length(child.value); i++) {
​ ​ ​ ​ // Check if done highlighting

39

​ ​ ​ ​ IF (charsFound >= selectionLength):
​ ​ ​ ​ ​ RETURN
​ ​ ​ ​
​ ​ ​ ​ // Compare character to make sure we are

// highlighting the correct element
​ ​ ​ ​ IF (selectionContent[charsFound] == child.value[i]):
​ ​ ​ ​ ​ charsFound++
​ ​ ​ ​
​ ​ ​ ​ // Increment index and move to next character
​ ​ ​ ​ i++
​ ​ ​ }
​ ​ }
​ ​
​ ​ // For example, if node is <>abchildcd<> and 'child' is selected
​ ​ // then startIndex = 3 hence selectedElement is <>children<>
​ ​ // then previous loop would stop at the end of 'child' and i = 8
​ ​ // hence selectedElement will be <>child<>

// and rightElement will be <>ren<>
​ ​ NODE selectedElement = child.splitText(startIndex)
​ ​ NODE rightElement = selectedElement.splitText(i - startIndex)
​ ​
​ ​ // Prepare new but modified HTML Highlight element
​ ​ NODE highlighted = new NODE('span')
​ ​ highlighted.addCSS(backgroundColor: COLOR)
​ ​ highlighted.text = selectedElement.value
​ ​ // Remove original element and replace it with modified

// Highlight element
​ ​ selectedElement.remove()
​ ​ container.insertBefore(highlighted, rightElement)

​ }

​ RETURN (charsFound, startFound)
}

* Reference:

Let us take an example of a simple text that spans multiple elements. When

highlighting ‘is is just an exa’, the defined properties of the selection will be as

follows [16]:

40

Figure 5.2.1 Web API Illustration

4.5 Dynamic Webpage Detection

When creating a web application that allows users to highlight and annotate

webpages, one major challenge is the dynamic nature of webpages. If a page

changes between the time a user makes a highlight and revisits the webpage,

some highlights and annotations may no longer appear. To avoid this issue, we

need a way to detect when a webpage has changed since the last time the user

accessed the site.

One solution we came up with is to hash all the elements of the webpage at the

time the user makes a highlight and store it in the database. Then, when the user

visits the webpage again, we can compare the new hash with the stored hash to

check if any changes have been made.

To ensure the hash value remains consistent regardless of metadata changes, we

exclude the id and class attributes from the hash calculation. We accomplish this

by using a DOM tree traversal algorithm to visit all the nodes in the DOM tree and

extract only the relevant data we want to include in the hash. This data includes

the tag name, text content, and value of form elements.

Here is the function we developed for hashPage that excludes the id and class

attributes:
function hashPage() {

 const hash = CryptoJS.algo.SHA256.create();

41

 // Traverse the DOM tree and extract the relevant data for hashing

 function traverse(node) {

 // Skip nodes that should be ignored

 if (node.nodeType === Node.COMMENT_NODE ||

 node.nodeType === Node.PROCESSING_INSTRUCTION_NODE ||

 node.nodeType === Node.DOCUMENT_TYPE_NODE) {

 return;

 }

 // Extract the relevant data for hashing

 const tagName = node.nodeName.toLowerCase();

 const textContent = node.nodeType === Node.TEXT_NODE ? node.textContent.trim()

: '';

 let value = '';

 if (tagName === 'input' || tagName === 'textarea' || tagName === 'select') {

 value = node.value.trim();

 }

 // Hash the relevant data

 hash.update(`${tagName}:${textContent}:${value}`);

 // Traverse the child nodes

 for (let childNode of node.childNodes) {

 traverse(childNode);

 }

 }

 // Start the DOM tree traversal from the root element

 traverse(document.documentElement);

 // Finalize the hash and return the hash value as a string

 return hash.finalize().toString(CryptoJS.enc.Hex);

}

42

By warning users that changes have been made to the webpage, we can provide a

better user experience and help them avoid confusion and frustration.

5. Division of Labor

5.1 Work Distribution

Throughout this project, we have maintained an equal division of labor and worked

collaboratively to achieve our goals. We made a conscious effort to meet at least

once a week to discuss our progress, address any challenges we faced, and set

goals for the following week. Our meetings were mostly productive, and we made

sure to discuss things that needed to be addressed together to ensure that we

were both on the same page. As a result of this collaborative effort, we were both

able to gain new technical skills and are proud of what we have achieved for this

project.

Here is the timeline showing the breakdown of our work throughout the two terms:

Term 1:

43

Term 2:

5.2 Individual Contribution (Angelica)

During the first term, both Figo and I collaborated on the product ideation phase,

where we brainstormed ideas and conceptualized the features and functionalities

of Luminate. After that, I took charge of designing the User Interface (UI) and User

Experience (UX) for the Chrome extension and web app. This involved creating

mockups, wireframes, and prototypes to ensure a cohesive and user-friendly

design for our application.

Meanwhile, Figo worked on the Chrome extension setup and the Chrome

extension popup. We then divided the development work, with me focusing on the

web app front-end, while Figo handled the Chrome extension highlighting

function.

In the second term, I began by designing the UI/UX for the social annotation

feature. After planning out what had to be done, Figo and I decided to switch

roles. I took over the development of the Chrome extension, while Figo continued

building the web app. This allowed me to gain hands-on experience in Chrome

extension development, which further improved my understanding of the project

as a whole.

44

I implemented the Chrome extension login and signup functions and the

secondary functions related to the social annotation feature. I also worked on the

Chrome extension database integration, which was another new experience for

me, as I primarily worked with front-end development in the past. Figo, on the

other hand, focused on the web app front for social annotation and the web app

login and signup functions. He also took care of the web app database integration.

One of the main challenges I faced during the project was learning everything

from scratch, as I had limited experience in Chrome extension development. This

required me to quickly adapt to new technologies and tools while managing the

design aspects of the project. Building the Chrome extension was a new

experience, involving a lot of trial and error. However, overcoming these

challenges has been a valuable learning experience, allowing me to expand my

skill set and grow as a developer, and also improve my UI/UX skills.

In conclusion, working on Luminate has been a rewarding journey, filled with

challenges and opportunities for growth. By collaborating closely with Figo and

dividing tasks according to our strengths, we have managed to build something

we’re proud of.

6. Conclusion
For us, this project has been a steep learning experience. It all started with our

desire to create something meaningful that people would use, and we eventually

settled on the idea of a web annotation tool as a result of our frustration with the

inefficiencies of taking notes from online resources. Throughout the project, we

encountered a lot of things we have not learned before, such as knowledge

management system, DOM manipulation, Chrome extension development, etc.

We’re committed to continue learning all the things we need to learn to build and

eventually ship our app for people to use.

45

We are building Luminate with the mission to enhance all aspects of our

information workflow. Our ultimate goal is to provide the ultimate information and

knowledge management system that will transform how we research, consume,

and organize information, starting with our web annotation tool.

46

7. References

[1] H. Nick, “How Many Websites Are There in the World?,” siteefy.com.

https://siteefy.com/how-many-websites-are-there/

[2] “Welcome to Manifest V3,” developer.chrome.com.

https://developer.chrome.com/docs/extensions/mv3/intro/

[3] “Overview of Manifest V3,” developer.chrome.com.

https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/

[4] “Is Google’s Manifest V3 the end of ad blockers?,” nordvpn.com.

https://nordvpn.com/blog/manifest-v3-ad-blockers

[5] “Overview and timelines for migrating to Manifest V3,“ learn.microsoft.com.

https://learn.microsoft.com/en-us/microsoft-edge/extensions-chromium/de

veloper-guide/manifest-v3

[6] “React - A JavaScript library for building user interfaces,” reactjs.org.

https://reactjs.org/

[7] “TypeScript: The starting point for learning TypeScript,” typescriptlang.org.

https://www.typescriptlang.org/docs/

[8] “What is Next.js?,” nextjs.org.

https://nextjs.org/learn/foundations/about-nextjs/what-is-nextjs

[9] “Tailwind CSS,” tailwindcss.com.

https://tailwindcss.com/

[10] “webpack,” webpack.js.org.

https://webpack.js.org/

[11] “Firebase Documentation,” firebase.google.com.

https://firebase.google.com/docs

[12] “Firestore | Firebase,” firebase.google.com.

https://firebase.google.com/docs/firestore

[13] “Firebase Authentication,” firebase.google.com.

47

https://siteefy.com/how-many-websites-are-there/
https://developer.chrome.com/docs/extensions/mv3/intro/
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://nordvpn.com/blog/manifest-v3-ad-blockers/#:~:text=What%20is%20Manifest%20V3%3F,extensions%20interact%20with%20your%20browser
https://learn.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://learn.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://reactjs.org/
https://www.typescriptlang.org/docs/
https://nextjs.org/learn/foundations/about-nextjs/what-is-nextjs
https://tailwindcss.com/
https://webpack.js.org/
https://firebase.google.com/docs
https://firebase.google.com/docs/firestore

https://firebase.google.com/docs/aut

[14] “Architecture overview - Chrome Developer,” developer.chrome.com.

https://developer.chrome.com/docs/extensions/mv3/architecture-overview/

[15] P-L. Jerome, highlighter (Version 4.0.4) [Source code].

https://github.com/jeromepl/highlighter.

[16] “Selection and Range,” javascript.info.

https://javascript.info/selection-range

48

https://firebase.google.com/docs/auth
https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://github.com/jeromepl/highlighter
https://javascript.info/selection-range

	Luminate - Web Annotation Tool
	Table of Contents
	
	Abstract
	Acknowledgements
	
	1. Introduction
	1.1 Motivation
	1.2 Background
	1.3 Significance of the project
	1.4 Objective

	2. Design
	2.1 Sequence Diagram
	2.1.1 Basic Features
	2.1.2 Social Annotation Feature

	2.2 Basic Features
	2.2.1 User Registration
	2.2.2 User Login
	
	2.2.3 Save and Unsave Page
	2.2.4 Highlight Items and Save
	2.2.5 Delete Highlights
	2.2.6 Add Annotations
	2.2.7 Delete and Edit Annotations
	2.2.8 View saved pages and highlights
	2.2.9 Search saved pages

	2.3 Social Annotation Features
	2.3.1 Set Highlights and Annotations as Public or Private
	2.3.2 Follow and Unfollow Users
	2.3.3 View Public Annotations of Followed Users

	3. Technical Specifications
	3.1 Tech Stack
	3.1.1 Manifest V3
	3.1.2 ReactJS
	3.1.3 TypeScript
	3.1.4 NextJS
	3.1.5 TailwindCSS
	3.1.6 Webpack
	3.1.7 Firebase

	3.2 Project Architecture

	4. Implementation
	4.1 Chrome Extension Architecture
	4.2 Next.js Implementation
	4.3 Database Model
	4.4 Recursive Highlighting
	4.5 Dynamic Webpage Detection

	5. Division of Labor
	5.1 Work Distribution
	5.2 Individual Contribution (Angelica)

	6. Conclusion
	
	7. References

