
How to mark a conversation as answered

When keeping track of incoming messages, it’s important to separate answered and
unanswered conversations in your inbox. For example, a support team may want to filter for
conversations where the customer is waiting for a reply.

TalkJS makes it easy to add custom data to your conversations so that you can
automatically track which conversations have been answered. In this tutorial we’ll walk you
through how to do this, using TalkJS’s webhooks feature and REST API.

To follow along, you’ll need:

-​ A free TalkJS account. TalkJS provides a ready-to-use chat client for your application.
-​ An existing TalkJS project using the JavaScript Chat SDK. See our Getting Started

guide for an example of how to set this up.
-​ An installation of Node.js along with the npm package manager. We’ll use this to

create our webhook server.

We’ll build up the feature step by step in the following sections. If you would rather see the
complete example code, see the Github repo for this tutorial.

Getting notified about new messages

First we’ll enable TalkJS webhooks, which allow the TalkJS server to notify your server when
a message is sent. Webhooks let you use an event-driven architecture, where you get told
about events when they happen rather than having to constantly check for new messages.
There are lots of events you can listen for, but we’re only interested in new messages being
sent.

Webhooks are server-side only, so we’ll need a web server. We’ll be using Express in this
tutorial, but feel free to use your favourite web server library instead:

import express from "express";

https://talkjs.com/docs/Reference/Webhooks/
https://talkjs.com/docs/Getting_Started/Frameworks/React/#:~:text=A-,TalkJS%20account,-A%20basic%20understanding
https://talkjs.com/docs/Reference/JavaScript_Chat_SDK/
https://talkjs.com/docs/Getting_Started/
https://talkjs.com/docs/Getting_Started/
https://nodejs.org/en
https://www.npmjs.com/
https://github.com/keerlu/mark-as-answered/tree/main
https://talkjs.com/docs/Reference/Webhooks
https://expressjs.com/

const app = express().use(express.json()); // creates http server

app.listen(3000, () => console.log("Server is up"));

app.post("/talkjs", (req, res) => {

 console.log(req.body);

 res.status(200).end();

});

This script sets up a POST endpoint at /talkjs that monitors incoming events from the
TalkJS server.

For TalkJS to communicate with your server, you must expose it to the internet. This can be
very difficult when developing locally, with endless firewalls and port-forwarding to set up.
Instead, we’ll use ngrok to create a secure tunnel to your local server. See our tutorial on
How to integrate ngrok with TalkJS for instructions on how to install ngrok.

Once you have installed ngrok, run the following command:

ngrok http 3000

This command starts a secure tunnel to your local port 3000. The output should include the
URL that ngrok exposes:

Forwarding https://<YOUR_SITE>.ngrok-free.app ->
http://localhost:3000

You’re now ready to enable webhooks. You can do this in the TalkJS dashboard under
Webhooks. Paste the URL above into the Webhook URL field, including the /talkjs
path: https://<YOUR_SITE>.ngrok-free.app/talkjs.

Then select the message.sent option:

https://ngrok.com/
https://talkjs.com/resources/how-to-integrate-ngrok-with-talkjs-to-receive-webhooks-locally/#setting-up-ngrok

TalkJS will now send a web request to your server when a message is sent. To test this,
write another message in your chat UI. You should see the event in your server’s console:

{
 createdAt: 1683276915840,
 data: {
 conversation: {
 createdAt: 1683275536667,
 custom: [Object],
 id: '15966c817cb1473d9b0a',
 // ... more fields here ...
 },
 message: {
 // ... message fields here ...
 },
 sender: {
 // ... sender fields here ...
 }
 },
 id: 'evt_AVL7tDG9V7CPSXBfG4',
 type: 'message.sent'
}

Test the TalkJS REST API

Next, we’ll react to the events by calling the TalkJS REST API to add custom data to
conversations. We’ll use this to set the answered: true property on conversations where
the latest message is from the support team. This lets us filter out these conversations from
the support inbox, so we only see unanswered messages.

In this tutorial we will use the node-fetch module to make API requests, but you can use
another library if you prefer.

import fetch from "node-fetch";

const appId = "<APP_ID>";

const secretKey = "<SECRET_KEY>";

const basePath = "https://api.talkjs.com";

const path = basePath + "/v1/" + appId + "/conversations/";

This imports the node-fetch module and sets up the URLs you will need to call. Fill in the app
ID and secret key with the values from your TalkJS dashboard. Make sure you protect that
secret key and never expose it in frontend code – it has full admin access to your TalkJS
account.

As a first test of the API, try running a GET request to get all conversations. Add the
following to your script below the const path = ... line:

const response = fetch(path, {

 method: "get",

 headers: {

 "Content-Type": "application/json",

 Authorization: `Bearer ${secretKey}`,

 },

})

 .then((res) => res.json())

 .then((data) => console.log(data));

Now run the script. You should get a list of all your conversations:

{
 data: [
 {
 createdAt: 1683275536667,
 // ... more fields ...
 },
 // ... more conversations

https://talkjs.com/docs/Reference/REST_API/Getting_Started/Introduction/
https://github.com/node-fetch/node-fetch
https://talkjs.com/docs/Reference/REST_API/Conversations/#listing-all-conversations-in-the-application

]
}

Mark conversations as answered

This time, instead of a GET request, we’ll use a PUT request to update the conversation
data when a sent message event arrives at your local server. The conversation data includes
a custom field which you can use to add an extra answered property.

In this example, we’ll assume you are using TalkJS’s Roles feature to define support and
customer roles for users. You will then see these roles in the role field of the user data you
receive from the sent message event. Alternatively, you could use the custom data for each
user to indicate whether they are a member of the support team, and check that property
here instead.

Either way, we’ll set an answered: "true" property on the conversation if the new
message is from support, and an answered: "false" property otherwise.

Replace your previous app.post method with the following:

async function setAnswered(isSupport) {

 return fetch(path + conversationId, {

 method: "put",

 headers: {

 "Content-Type": "application/json",

 Authorization: `Bearer ${secretKey}`,

 },

 body: JSON.stringify({

 answered: isSupport ? "true" : "false"

 }),

 });

}

app.post("/talkjs", async (req, res) => {

 const data = req.body.data;

 const role = data.sender.role;

 const conversationId = data.conversation.id;

 await setAnswered(role === "support");

 await res.status(200).end());

});

This method calls the API when the server receives a new message event, and sets the
answered property to "true" if the message is from support and "false" otherwise.

https://talkjs.com/docs/Reference/REST_API/Conversations/#setting-conversation-data
https://talkjs.com/docs/Reference/REST_API/Conversations/#setting-conversation-data
https://talkjs.com/docs/Reference/Concepts/Conversations/#custom
https://talkjs.com/docs/Reference/Concepts/Roles/
https://talkjs.com/docs/Reference/Concepts/Users/#role
https://talkjs.com/docs/Reference/JavaScript_Chat_SDK/User/#User__custom
https://talkjs.com/docs/Reference/JavaScript_Chat_SDK/User/#User__custom

Filter the inbox

Finally, we want to filter conversations so that only unanswered ones appear in the inbox. To
do this, use the setFeedFilter method.

Add the following line before mounting your inbox, to only show conversations where
custom.answered is not true. This means that any pre-existing conversations that are
missing the answered property will still appear:

inbox.setFeedFilter({ custom: { answered: ["!=", "true"] } });

You should now see only unanswered messages in your conversation list on the left hand
side of the screen:

Conclusion

You now have a working demonstration of how to filter an inbox for unanswered messages!
To recap, in this tutorial we have:

-​ Set up a web server to receive webhook events from the TalkJS server
-​ Called the REST API to add custom data to mark conversations as answered when a

new message is sent from support
-​ Filtered the chat inbox so that only unanswered messages are displayed

https://talkjs.com/docs/Reference/JavaScript_Chat_SDK/Inbox/#Inbox__setFeedFilter

For the full example code for this tutorial, see our Github repo.

If you want to learn more about TalkJS, here are some good places to start:

-​ The TalkJS Documentation helps you get started with TalkJS
-​ TalkJS tutorials provide how-to guides for many common TalkJS use cases
-​ The talkjs-examples Github repo has larger complete examples that

demonstrate how to integrate with other libraries and frameworks

https://github.com/keerlu/mark-as-answered/tree/main
https://talkjs.com/docs/
https://talkjs.com/resources/tag/tutorials/
https://github.com/talkjs/talkjs-examples

	How to mark a conversation as answered

