
FedCM | Error API and Auto-Selected Flag API
Author: yigu@chromium.org Status: Final Last Updated: 2023-08-30

Motivation

Error API
AutoSelectedFlag API

Proposal
Error API

Mocks
Proposed API

The IdP HTTP API
code
url

The Client JS API
AutoSelectedFlag API

IdP
API caller (RP, IdP SDK etc.)

Privacy Consideration
Error API
AutoSelectedFlag API

Sharing with IdP
Sharing with RP (API caller)

Security Consideration
Error API

Phishing
AutoSelectedFlag API

Considered alternative
Error API

API caller handles all errors
AutoSelected API

Appendix

Motivation

Error API

Today, when a user clicks the “Continue as” button on the FedCM UI to sign in to RP with IdP, if
something goes wrong and no token is issued by the IdP, the request will fail silently. The user
may be confused in such a case because it’s likely that they won’t see any notification about the
error. The FedCM API currently lacks a dedicated API surface that enables an IdP to return
information about what went wrong and where to go from there to the RP or the browser. The
only option is to overload the IdentityCredential.token parameter and rely on the API caller (IdP
SDK, RP, or 3P library) to decode and display error messages. Unfortunately, this creates two
problems:

1.​ IdPs have no guarantees that their errors will be handled as they expect by their callers.
2.​ RPs have to special-case each IdP to parse and display the IdP-specific error.

A dedicated API surface would address these problems by providing a standard way for IdPs to
return error information to RPs and/or users. This would allow IdPs to be confident that their
errors would be handled correctly, and it would eliminate the need for RPs to special-case each
IdP.

This is a proposal to introduce an API to inform the user agent about errors and handle them
consistently across IdPs.

AutoSelectedFlag API
Auto re-authentication is the default user mediation behavior in Credential Management API.
However, auto re-authentication may be unavailable due to reasons that only the browser
knows; when it’s unavailable the user may be prompted to sign in with explicit user mediation
which is a flow with different properties.

-​ From an API caller’s perspective, when they receive an id token, they don’t have visibility
over whether it was an outcome of an auto re-authn flow. That makes it hard for them to
evaluate the API performance and improve UX accordingly.

-​ From the IdP’s perspective, they are equally unable to tell whether an auto re-authn
occurred or not. Whether an explicit user mediation was involved could help them
support more security related features. e.g. some users and/or RPs may prefer a higher
security tier which requires explicit user mediation in authentication. If an IdP receives a
token request, they could reject it if the user didn’t grant permission in the flow.

Therefore, providing visibility of the auto re-authentication flow would be beneficial to
developers.

Proposal

https://fedidcg.github.io/FedCM/#dom-identitycredential-token
https://w3c.github.io/webappsec-credential-management/#dom-credentialmediationrequirement-optional
https://fedidcg.github.io/FedCM/#auto-reauthenticated

Error API
In this proposal, to guarantee to IdPs that errors are shown to inform users that their sign-in
attempt has failed, the browser can support displaying error dialogs. To start with, a general
purpose error dialog can cover a lot of cases and guarantee that users are notified in a
consistent manner across RPs and IdPs. For example (all mocks are browser specific and
subject to change):

While the general purpose error dialog is better than the status quo, there are known error
cases where a more purpose-specific dialog could give users more specific information.
Therefore, it would be better if the browser can show some specific error dialogs to give the
user more context. e.g.

The enumeration of specific errors could be insufficient and it’s possible that users would want
to learn more about the error and potentially some next steps to fix the error. Therefore the
browser can provide some affordance to achieve that, e.g. via a new “More details” button.

When the user clicks the “More details” button, the browser can open a pop-up window to show
a IdP controlled page with detailed information about the error.

Mocks
To see the mocks for all enumerated errors, please see this doc.

Proposed API
In this proposal, to support the error dialogs described above, the browser introduces error
codes and error urls that can be used whenever the IdP cannot produce a token.

https://docs.google.com/document/d/1a-sD5cHcCo8QohaQSji-mB6OpttF3z4hJMsg5rmdzxE/edit#heading=h.6pzwfrfj3213

The IdP HTTP API

In the id_assertion_endpoint, currently the IdP can return a token to the browser if it can
be issued upon request. In this proposal, in case a token cannot be issued, the IdP can return
an “error” response, which has two new fields:

1.​ code
2.​ url

code

OPTIONAL. The IdP can use the “code” field to specify one of the known errors from
[invalid_request,unauthorized_client, access_denied, server_error and
temporarily_unavailable]. e.g.

None

None

// id_assertion_endpoint response
{
 "error" : {
 "code": "unauthorized_client"
 }
}

The list is based on the OAuth 2.0 error response table to cover common errors across IdPs.

If a valid code is included in the response of the token request, the browser can trigger a native
UI with proper strings to notify users that their sign-in attempt was failed due to the
corresponding error. See considered alternatives for other options to show errors.

If an error is provided but the code is not on the pre-defined list, we propose to pass the string
to the API caller and show the uncustomized generic error UI above.

url

OPTIONAL. A URL identifying a human-readable web page with information about the error,
used to provide additional information about the error to users. The uri must be of the
same-origin as the IdP configURL .

// id_assertion_endpoint response
{
 "error": {​
 "url" : "https://idp.example/error?type=foo"
 }
}

This field is useful to users because browsers cannot provide rich error messages on a native
UI. e.g. links for next steps, customer service contact information etc.. If a user wants to learn
more about the error details and how to fix it, they could visit the provided page from the
browser UI for more details.

Note

1.​ Both code and url are optional in case of token request failures. The browser should
provide a fallback UI to keep users aware if both are missing.

○​ The new browser error UI may conflict with existing error UI rendered by the RP if
any. That said, the risk is extremely low based on how we see current IdPs
implementing FedCM.

https://idp.example/error?type=foo

None

○​ We believe that the browser should be opinionated to render a fallback error UI to
make sure that users are informed when their sign-in attempt has failed.

2.​ It’s possible that there’s no response returned from the id_assertion_endpoint in
which case the browser cannot be sure that an error occurred. Without a time-out
mechanism, the browser won’t show any UI in this case.

The Client JS API
To give more context to the API caller such that they could provide more sign-in options to
users, the browser can pass over the error (code and url) by failing the promise:

try {
 await avigator.credentials.get({​
 identity: {
 // ...​
 }
 });
} catch ({code, url}) {
 // Oops, something went wrong
}

AutoSelectedFlag API
In this proposal, the browser shares whether an explicit user permission was acquired in the
transaction with both the IdP and RP whenever auto re-authentication occurred or an explicit
mediation occurred. Note that the sharing only happens post user permission for IdP/RP
communication.

IdP
To share the information to the IdP post user permission, we can include it in the POST
request sent to the id_assertion_endpoint:

POST /fedcm_assertion_endpoint HTTP/1.1

Host: idp.example

Origin: https://rp.example/

Content-Type: application/x-www-form-urlencoded

Cookie: 0x23223

Sec-Fetch-Dest: webidentity

None

account_id=123&client_id=client1234&nonce=Ct60bD&disclosure_text_shown=true&is_auto

_selected=true

API caller (RP, IdP SDK etc.)
The browser can share the information to the RP via IdentityCredential:

// IdentityCredential object
{
 "token": "eyJC...J9.eyJzdWTE2...MjM5MDIyfQ.SflV_adQssw....5c",
 "isAutoSelected": true
}

Privacy Consideration

Error API
The new Error Response API is only invoked post user permission to allow RP/IdP
communication. e.g. the user is aware that they are “signing in to RP with IdP”. In addition, the
IdP has already possessed both the RP information and the user cookie from the
id_assertion_endpoint. Therefore we believe that there’s no change in the privacy threat
model with the new API.

AutoSelectedFlag API

Sharing with IdP
The is_auto_selected / isAutoSelected bit is true if all of the following are true:

1.​ preventSilentAccess was not in effect (it was not used in the past or it was used but
the user has signed in again after that)

2.​ mediation: required is not used in FedCM API
3.​ the user has only one active session with the IdP
4.​ the user has granted permission for the {RP, IdP} pair in the browser in the past and the

permission is not cleared
5.​ auto re-authn was not triggered in the last 10 mins

https://fedidcg.github.io/FedCM/#browser-api-identity-credential-interface

The information in #1 and #2 is already known to the IdP by virtue of the RP having used the
SDK. If the SDK is not used, it is still acceptable to expose this information to the IdP, as the RP
has already trusted the IdP for federated sign-in and the additional information is closely related
to the API.

#3 is IdP populated information.

The information in #4 and #5 is browser-specific information. As the user has already granted
permission for the RP/IdP to communicate, revealing this information to the IdP does not
introduce any privacy risks.

On the other hand, if the is_auto_selected / isAutoSelected bit is false, IdP would
learn less because they couldn’t tell the exact reason. e.g. a user may have started a new
browser client or they have cleared site data etc..

Sharing with RP (API caller)
We believe the same analysis above applies to RP as well. In addition, once an IdP has
obtained the information, it can already share it with the RP via the opaque token string so the
browser doesn't introduce any new risk.

Security Consideration

Error API
When the user clicks the “More details” button, we open a popup (same UI and web platform
properties as what one would get with
window.open(url,””,”popup,noopener,noreferrer”)) that loads the “error.url”. Note
that no communication between the website and this pop-up is allowed (e.g. no postMessage,
no window.opener).

Phishing
The primary threat is a phishing attack, where the attacker (who controls - or colludes with - both
the RP as well as the IdP) can provide a fake “error.url” (that impersonates a real IdP) for the
browser to display via the pop-up window, and trick the user to enter their (real IdP) password
there. e.g. upon user clicking the “More details” button, the browser will open a page that looks
like a genuine “Sign in to IdP” website. Then the user “may” be tricked into entering their IdP
credentials on that website.

Because of that, the pop-up window has the following properties:
-​ the preceding UI showing the eTLD+1 of the attacker in a prominent way
-​ the URL bar shows the full URL (same-origin with configURL) that is being loaded
-​ users are familiar with how pop-up window looks and can move it around
-​ safe browsing works as usual

As such, the attack has to rely on the fact that the user misses the displayed origin/site in both
steps and on safe browsing not knowing about the site.

In addition to that, the attacker may already be able to do this by opening a phishing pop-up
window and there’s no browser UI involved compared to this proposal.

AutoSelectedFlag API
Similar to the privacy considerations above, the boolean we share with IdP doesn’t introduce
any security risk. Post user permission, the IdP can already share the boolean with RP directly
via the token field so the boolean we share with RP should not have any regression.

Considered alternative

Error API

API caller handles all errors
The browser could delegate handling the errors to the API callers (RP or IdP SDK or FedCM
library owned neither by RP nor IdP).

When the browser receives the errors from the token request, it rejects the promise with the
errors. Once the API caller receives the error, the caller can inform users accordingly. e.g. the
caller can render an iframe to show proper information to users.

Pros

-​ It gives the API caller more control over the error UI. e.g. they can customize the iframe
and navigate users to new journeys from there.

-​ IdPs can expose very specific errors that represent the specific problem that occurred
Cons

-​ RP DX Problem: API callers need to handle errors for each IdP independently.
-​ UX Problem: different IdPs will produce inconsistent error UI for users.
-​ IdP Problem: the IdP has no guarantees that API callers will handle errors (properly),

e.g. causing users not to see their error UI.

None

None

AutoSelectedFlag API
Instead of the browser sending the bit to both IdP and API callers directly, it can choose to only
share it with the IdP, and then let the IdP share it with the RP. For example, IdP can integrate
the information to the token string. While it’s suboptimal to overload the well-specified OIDC id
token, they can also do so with some extra FedCM support:

1.​ IdP first include a new field in the id_assertion_endpoint response

// id_assertion_endpoint response
{
 "token": "eyJC...J9.eyJzdWTE2...MjM5MDIyfQ.SflV_adQssw....5c",
 "is_auto_selected": true
}

2.​ Browser shares the information with RP the same way as this proposal does

// IdentityCredential object
{
 "token": "eyJC...J9.eyJzdWTE2...MjM5MDIyfQ.SflV_adQssw....5c",
 "isAutoSelected": true
}

While allowing IdP to add information in the response is better from extensibility’s
perspective, e.g. they could add more fields to share more information with the API caller, we
don’t find it very desirable at the moment. More importantly, we don’t think it’s mutually exclusive
with our current proposal so we can add them later if needed.

Appendix

OAuth 2.0 Error Response: link

Error Description Included in FedCM API

invalid_request The request is missing a
required parameter, includes
an invalid parameter value,
includes a parameter more
than once, or is otherwise
malformed.

Yes.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.2.1

unauthorized_client The client is not authorized to
request an authorization code
using this method.

Yes.

access_denied The resource owner or
authorization server denied
the request.

Yes.

unsupported_response_type The authorization server does
not support obtaining an
authorization code using this
method.

No. FedCM is authentication
focused at the moment and
we can add this type in the
future.

invalid_scope The requested scope is
invalid, unknown, or
malformed.

No. FedCM is authentication
focused at the moment and
we can add this type in the
future.

server_error The authorization server
encountered an unexpected
condition that prevented it
from fulfilling the request.
(This error code is needed
because a 500 Internal
Server Error HTTP status
code cannot be returned to
the client via an HTTP
redirect.)

Yes.

temporarily_unavailable The authorization server is
currently unable to handle the
request due to a temporary
overloading or maintenance
of the server. (This error
code is needed because a
503 Service Unavailable
HTTP status code cannot be
returned to the client via an
HTTP redirect.)

Yes.

	FedCM | Error API and Auto-Selected Flag API
	
	Motivation
	Error API
	AutoSelectedFlag API

	Proposal
	Error API
	Mocks
	Proposed API
	The IdP HTTP API
	code
	url

	The Client JS API

	AutoSelectedFlag API
	IdP
	API caller (RP, IdP SDK etc.)

	Privacy Consideration
	Error API
	AutoSelectedFlag API
	Sharing with IdP
	Sharing with RP (API caller)

	Security Consideration
	Error API
	Phishing

	AutoSelectedFlag API

	Considered alternative
	Error API
	API caller handles all errors

	AutoSelectedFlag API

	Appendix

