User-defined Blocks for MIT App Inventor
Jane Im

Supervisor: Hal Abelson, MIT App Inventor
6.100 Project Report, Spring 2017

1. Introduction

MIT App Inventor is an open source web platform that lets users build their own Android
Apps quickly by using blocks-based programming. MIT App Inventor currently has diverse
types of components, from general blocks to specific task oriented components like sensors.
However, it does not provide every type of block that an user needs. For example, currently
there are no components for intricate graph visualization in App Inventor. However, there is a
limitation to keep adding new categories of blocks, not only because the complexity of
maintaining the system will increase, but also because an individual user’s need is necessarily
not a general need for others. In order to keep lowering the barriers of creating special goal
oriented apps and to foster the learning of computational thinking, while also preventing the
situation of adding every possible block to the system, a new feature called “user-defined

blocks(customizable blocks)” has been implemented during 2017 Spring semester.

2. Definition of User-defined Blocks

User-defined blocks indicate the format of a block that could be customized to any kind
of block the user wants to create, under the assumption that it 1.calls a function of a JavaScript

API that is being used in the web page shown in the WebViewer component, and 2.has the right

format that corresponds to the function it triggers. It could also indicate any kind of block that a

user has created using this format.

3.Background: WebViewer Component

WebViewer is a component in MIT App Inventor that lets users view web pages on their
screens. There was previous work in MIT App Inventor to enable users to create and call
JavaScript functions or variables with this component. The work on user-defined blocks is based
on this previous work, to let users call any JavaScript functions that are currently being used in

the web page that the WebViewer’s url is referencing to.
4. Scenario

The scenario in this section will help the user’s understanding of this paper. Jennifer is in
charge of keeping track of her friends’ scores of a game they regularly play. In order to track
scores easily whenever she wants to, she decides to build a simple app that shows a table of her
friends’ names and scores using MIT App Inventor. She goes to App Inventor, takes out the
WebViewer component, and follows the tutorial for making a simple app in which users could
manipulate a table easily. Even though there aren’t table related blocks in App Inventor, Jennifer
creates five blocks that could each add a column, remove a column, add a row, remove a row,
and set data of a table cell, using user-defined blocks. By using the blocks she created, she finally
implements an app like Figure 1. In this app the user could type in a name or number to add or
remove row or column, or set a data to a table cell. For example, in Figure 1, Jennifer typed in
“Natalie” in the textbox for a column name, and pressed “ADD COLUMN” to add a column for

her friend Natalie in the table.

Paul Jane Natalie

Score | 100

Game
ID

Figure 1. App created using user-defined blocks, in which users can manipulate a table.

5. System Architecture

5.1 JSON Blocks

The first step was to add a new property called “JSONBlocks” to WebViewer.
JSONBIlocks is a long string of JSON format showing an array of objects. Each object conveys
information of each block that the user wants to create and add to the WebViewer’s flyout. In
each object, basic information of the block along with two newly added attributes are contained.
The two newly added attributes are “function_name” and “parameters”, which are closely shown
in Figure 3.

The “function_name” attribute indicates the name of the function that the block is calling
from the JavaScript API that is used in the web page of the WebViewer. For example, if a block
called “set_data” triggers a function called “setData”, the “function_name” of the object should
be “setData”.

The section of parameters inform the system about which argument of the block
corresponds to a particular parameter. If there are three parameters each corresponding to a row

index, column index, and a value the table cell will be set to, the parameter section should each

sequentially contain information about the argument of the block for a row index, column index,
and lastly the value a table cell will be set to, as it is shown in Figure 3. The “type” feature is
especially important, since depending on the type of the argument, the system will run different
code to extract the value from the block’s argument to put in the JavaScript function as
parameters. For example, if the corresponding argument is a field, the function “getFieldValue”
will be called. Currently the system only differentiates inputs and fields, but since there are
diverse types of inputs, and especially fields, the system will have to be modified to make more
intricate differentiations.

When the user puts in a string of an array containing » objects that each convey
information of an user-defined block and moves on to the “Blocks” section, one can see that »
new blocks have been added to the WebViewer’s flyout (Figure 4). The system has taken the
long string that was in JSONBIlocks property textbox and parsed it to extract information of each

new block to add.

ST [{"type":"addrow","message0":" add row

WebViewerl %1","args0":[{"type":"input_value","name":"rowNumber"}],"para
FollowLinks meters":[{"name":"rowNumber","type":"INPUT"}],"inputsInline":tr
@ ue,"previousStatement":null,"nextStatement":null,"colour":230,"t

Height ooltip":"","helpUrl":"","function_name":"addRow"},{"type":"remov

erow","message0":"remove row
Width %1","args0":[{"type":"input_value","name":"rowNumber"}],"para
tom meters":[{"name":"rowNumber","type":"INPUT"}],"inputsInline":tr
_ ue,"previousStatement":null,"nextStatement":null,"colour":230,"t
18 111 44 210800 ooltip":"","helpUrl":"","function_name":"removeRow"},{"type":"ad
d_column","message0":"add column
%1","args0":[{"type":"input_value","name":"columnName"}],"par
ameters":[{"name":"columnName","type":"INPUT"}],"inputsInline
":true,"previousStatement":null,"nextStatement":null,"colour":22

0,"tooltip™:"","helpUrl":"","function_name":"addColumn"},{"type":"

IgnoreSslErrors

JSONBIlocks

JavaScriotLibrarv

Figure 2. New property “JSONBlocks” added to WebViewer component

{

"type": "set_data",

"message@’
"argso": [

{

't "set

(row

"name’

[ntypel :

N\
"input_value",
"rowNum"

}s
{

s ~
"type": "input_value",
kf'name': "columnNum"

}s

{, ,
"type": "input value",
"name”: "data”

}L
1,

%1 column: %2)

"parameters": [

to %3",

-
"name":
lltypell :

\

“rowNum",
"INPUT"

"name": "columnNum",
"type": "INPUT"

3>

{r
"name": "data",
L"type": "INPUT"]

}
]

2
inputsInline”: true,
"previousStatement™:

null,

"nextStatement": null,

"colour":
"tOOltip": un,

" TS 1]
AT

230,

"function_name": "setData"

>

Figure 3. Example of an object for a user-defined block that calls function “setData”

Blocks

© Built-in
Econtrol
Boogc
Wviatn
.Ym
Wuists
Mcoiors
Bvariavles
Werocedures
8 [screem
Ewmv.ewen
© P HorizontalArrangemen
L columnName
B addcolumn
© PHorizontalAmrangemen
L columnNumber
& geteteColumn

A
© B HorizontalArrangemen

Ll cnwiiama M

Viewer

call (IEYETEE .CanGoBack
(1 WebViewer1 » JoE (el NEIG]

call (IE3ETIEED ClearCaches

call (IEYETEED ClearLocations

RN WebViewer! » JOICECNEIER W]

functionName

function

inputs

o) call (ENETIIED CreateJavaScriptObject
variableName
aftributes

[WebViewer1 » JOICENEIERT T ELT
variableName

Figure 4. Effect of adding user-defined blocks

5.2 Blockly Developer Tools

Blocks

© Built-in

= Control

- Logic

W van

- Text

. Lists

] Colors

] Variables

W procedures
e 0 Screenl

EWebVlewer'l

A
= HorizontalArrangement

“columnName

B addcolumn

A
e HorizontalArrangement

L columnNumber

& deletecolumn

A
e HorizontalArrangement

Viewer

add row ‘

remove row ‘

add column ‘

remove column ‘

set [row: ‘ column: ‘] to ‘

call MiEAEE SRS .CanGoBack

[~ WebViewer1 » Jerlel Joy1(]

(1|l WebViewer1 » JeILEToF: &)

P WebViewer1 » Mo Lo

Considering the aspect of usability, it is crucial to prevent the user from typing long

sequences of objects to generate a string that needs to be pasted in JSONBIlocks property.

Therefore, Blockly Developer Tools, a tool provided by Google to easily create blocks, was
modified to create the right interface for this task.

Users can use Blockly Developer Tools to create a format of a block by easily snapping
smaller pieces of blocks, such as blocks for input or field. Two new features “method name” and
“parameters” were added to the root block as shown in in Figure 5. In “method name”, users
type in the name of the function in the JavaScript API this block will trigger. In “parameters”
users drop in a parameter block (Figure 7) and type in the name of the argument whose value
will be put in as the corresponding parameter. Whether the type of an argument corresponding to
each parameter is an “input” or a “field” should also be chosen , since different code is triggered
according to each type.

Every time the user makes an update to the root block, the string that describes the block
will be updated on the right, as shown in Figure 6. Another convenient aspect of Blockly
Developer Tools is that every block that the user has created can be saved and stored in Block
Library, as shown in Figure 8. After users have created all blocks, they can click “Get JSON
String” button to see an alert box pop up with a selected string of the right format to put in the
JSONBIlocks property. The string includes all information of the blocks stored in Block Library,

so the users can just copy the string and paste it to the JSONBlocks property textbox.

[P sot_data
inputs value input [EITIY

Cinline - AT
toottip
help url
top type
bottom type
colour
method name] setData 20
parameters CYYSTY rowNum |
type IITED
LT columnNum J
type ITTTED
name GE)
ype EETED

Figure 5. Two new attributes, “method name” and “parameters”

{ Block Exporter Workspace Factory

y Update "set_data" Delete "set_data" GetJSONSting | ClearLibrary ImportBlock Library Downloar
Preview: (TR v

LZUERT T rowNum | q Button to retrieve

o (KD foxt N the whole string

to be pasted in
(TR columnNum |
fields u;mpdax(m JSONBIocks

s property textbox.

Block Definition: [Json v

value input
fields (D | text §D)
—

] R String is updated
(I B ot The method iy il everytime the
" top]bottom connections - | . . “nextStatement”: null,
B name which this “corow: user makes a

tooltip
; ; "helplrl” change on the
block triggers is cnang
) A .
ptye typed in here. e
botton e
R Generator stub: Javascript v
colour TS 230 | — = -
Blockly.JavaScript['set_data'] = function(block) {
method hame 'Y setData k. var value_rownum = Blockly.JlavaScript.valueToCode(block, 'rowhum’, Blockly.JavaScript.ORDER_ATOMIC);
var value_columnnum = Blockly.JavaScript.valueToCode(block, ‘columnlum’, Blockly.JavaScript.ORDER_ATOMI

paramete s name [y var value_data = Blockly.JlavaScript.valueToCode(block, 'data’, Blockly.JavaScript.ORDER_ATOMIC);

lype m C;rﬂégg; 5s?emb%i"??vas<ript into code variable.

T oummun] 1 e parameter section gives return code;

type (TTED information of which input of the
PSS block is matched to which

parameter.

Figure 6. Modification of Blockly Developer Tools

"‘.P“t name Y3 = parameters
e type ([TITED

Type automatic

Colour

no connections

field

Figure 7. Newly added parameter block. Type of “input” and “field” are distinguished.

Block Factory Block Exporter Workspace Factory

’ Block lel'al'y ’] Added bIOCkS can Update "set_data" Delete
be saved.

Create New Block
(NR'Z RTINS rowNum |

add_column

L et - IS set [row:)
N
remove_column
\ value input (CEITLIT)
T et - JEET column:
—

add_row

remove_row
/1\ value input CEE)
fields (K | text §ID)
| &%

set_data

Figure 8. Newly added blocks can be saved.

localhost:8000 says:

Enter the following string in JSONProperties textbox,

oK Cancel Set JSON String

Upd

Figure 9. Users can easily copy and paste the string to JSONBlocks property

6.Demonstration
This section gives more details on the table manipulating app that was introduced in 4.
Scenario. The user would first have to drag and place the WebViewer component and set the

HomeURL to the address of the web page showing the page of the basic table.
In order to create user-defined blocks that will manipulate the table, the user first has to
make one JSON formatted information for each block, following the process described in 5.2 by

using Blockly Developer Tools. In this case, the user makes one for five blocks, and clicks “Get

JSON String” to copy one big string containing all five information, and pastes it into the
JSONBIocks property textbox.

In the designer section, the user also has to drag and drop text boxes where the user will
be typing in values(when using the app) that will be put in the user-defined blocks, and later
plugged into the corresponding JavaScript functions. Users will also have to add buttons that will
each trigger a user-defined block which will then call the corresponding JavaScript function. For
example, in Figure 10, the value in textbox “columnName” will be put in as an input of the
“addColumn” function which the user-defined “addColumn” block triggers, after “Add column”

button is pressed.

Components Properties
Display hidden components in Viewer 8 [screem WebViewer]
Check to see Preview on Tablet size i
, & WebViewerl FollowLinks
L e HorizontalArrangemen v
e columnName Height
addColumn Automatic

‘ e HorizontalArrangemen T

columnNumber

Automatic.
deleteColumn
- HomeUrl
2 HorizontalArrangemen
hitp:/f128.31.36.86:8000/de
rowName
SRR IgnoreSsiErrors
Add col | e HorizontalArrangemen
column
rowNumber JSONBlocks
[[ype""addcolumn’ mess
deleteRow
Delete column _
e HorizontalArrangemen JavaScriptLibrary
setDataRow None
Add row
HorizontalArrangen PromptforPermission
setDataCol 2
Delete row
Blanlc UsesLocation

Rename Delete

Visible
v

Cn i B
o - =

Media

Figure 10. The designer section for making the table manipulating app

add column ‘

remove column ‘

add row ‘

ADD COLUMN
DELETE COLUMN
ADD ROW

DELETE ROW
set [row: ‘ column: ‘]to '

SET DATA

Figure 11. Corresponding blocks and buttons in app

when .Click
o LR rowName - I Text -)

-

when ELLe6] k8 .Click

ST columniame - Text -
|

when _Click
e ——————— —_— —_—
do et B setDataRow - B Text - MEIVG 0 || setDataCol - Y Text - MECHE data - [Text - |
e

= deleteColumn - Fiedl= ¢ A deleteRow « |# (= ¢

L EEEREEE owNumber - N Text -
-

LTS columnNumber - [Text -
R,

Figure 12. Blocks used to create the app in Figure I and Figure 11.

7. Education

I am in the process of writing a tutorial that users could follow to build an app using the

table JavaScript library described in 4.Scenario. The tutorial along with the JavaScript table API

and the aia file will be available in MIT App Inventor’s official website.

8. Future Work

Giving users easy access on how to make user-defined blocks, such as organizing
tutorials and demos, will be an important work in the future to lower the barrier of using
user-defined blocks. Enabling users to share their user-defined blocks with other users, which
means sharing the JavaScript API and JSON formatted string that they used when building an
app, will also be important to help out users that cannot easily find a JavaScript API to start with.

Another important area is using user-defined blocks to embed new blocks in MIT App
Inventor, since user-defined blocks has the potential to extend the range of blocks App Inventor
has. Therefore, ways of combining necessary JavaScript APIs with user-defined blocks should be

explored, such as embedding virtual reality blocks with it.

