A.REI.4

Solve quadratic equations in one variable.

- a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x p)^2 = q$ that has the same solutions.
- b. Solve quadratic equations as appropriate to the initial form of the equation by inspection, e.g., for $x^2 = 49$; taking square roots; completing the square; applying the quadratic formula; or utilizing the Zero-Product Property after factoring.
- c. Derive the quadratic formula using the method of completing the square.

A.REI.4	OH.2024.Q49
What is one solution to the equation $x^2 + 3.5x - 2 = 0$?	
$x = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	
A.REI.4	OH.2023.Q10
An equation is given.	
$40 = x^2 - 3x$	
What is one solution to the equation?	
A.REI.4	OH.2021.Q29
An equation is given.	
$x^2 + 9 = 6x$	
What is one solution to the equation?	
x =	

A.REI.4B OH.2018.Q42

An equation is shown.

$$16x^2 + 10x - 27 = -6x + 5$$

What are the solutions to this equation?

$$x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$x =$$

A.REI.4B OH.2016.Q4

Solve the equation $x^2 + 6x = -\frac{11}{4}$.

(A)
$$x = -3 \text{ and } x = 2$$

(B)
$$x = -2$$
 and $x = 3$

$$x = \frac{1}{2} \text{ and } x = -\frac{11}{2}$$

$$x = -\frac{1}{2}$$
 and $x = -\frac{11}{2}$

A.REI.4B OH.PT.Q17

An equation is shown.

$$2x^2 - 5x - 3 = 0$$

What values of x make the equation true?

x =	
-----	--

$$x =$$