Leveraging LLMs for Real-Time
Business Insights from Google
BigQuery

The integration of large language models (LLMs) with data warehouses like Google BigQuery is
revolutionizing how businesses extract valuable insights from their data’. This article explores
two primary approaches to achieve this: Retrieval Augmented Generation (RAG) and
LLM-Generated Code. We'll delve into the mechanics of each approach, analyze their pros and
cons, and recommend the best solution for real-time business insights from your BigQuery data.

Understanding Retrieval Augmented Generation
(RAG)

Retrieval Augmented Generation (RAG) enhances the capabilities of LLMs by grounding them
in external knowledge sources?. Instead of solely relying on the information it was trained on, an
LLM using RAG first retrieves relevant information from a designated knowledge base before
generating a response. This approach involves identifying and retrieving contextually relevant
information from external knowledge sources, such as your BigQuery database, to augment the
LLM's knowledge and improve the quality of its responses®. The LLM then combines this
retrieved knowledge with its internal knowledge to produce a more accurate and comprehensive
answer”,

RAG offers several advantages:

Reduced Hallucination: By grounding the LLM in factual data, RAG minimizes the risk of the
model generating incorrect or nonsensical outputs®.

Improved Accuracy: Access to external knowledge sources ensures that the LLM's
responses are based on the most current and relevant information®.

Enhanced Trust: RAG allows the LLM to cite its sources, enabling users to verify the
information and trust the generated responses”.

Efficient Updates: Integrating new information is relatively easy with RAG, as it doesn't
require retraining the entire model”.

Reduced Contradictions: RAG helps minimize contradictions and inconsistencies in the
generated text by fine-tuning or prompt-engineering the LLM to generate text entirely based
on the retrieved knowledge®.

Increased Business Control: RAG redirects the LLM to retrieve relevant information from
pre-determined knowledge sources, giving businesses more control over the generated text
output?.

Exploring LLM-Generated Code

While RAG focuses on augmenting the LLM's knowledge with external information, another
approach involves leveraging the LLM's ability to generate code. LLM-Generated Code utilizes



the code generation capabilities of LLMs to query and manipulate data in BigQuery’. In this
approach, the LLM generates Python code based on the user's query, which is then executed to
retrieve the required information from BigQuery®. The LLM learns the patterns and structures of
different programming languages by training on vast amounts of code from various sources,
such as GitHub repositories, Stack Overflow, and code snippets from websites®.

Some benefits of LLM-Generated Code include:

Automation: Automating the code generation process can save developers time and effort’.
Efficiency: LLMs can generate code quickly, potentially leading to faster query execution and
data retrieval’.

Flexibility: LLMs can generate code in various programming languages, providing flexibility
in how you interact with your data'.

However, it's essential to be aware of the potential limitations of this approach:

Code Complexity: LLMs can sometimes produce complex code blocks that are difficult to
understand and troubleshoot’.

Training Data Limitations: The quality and scope of the training data significantly influence
the performance of LLMs, and they may not always generate accurate or efficient code’.
Contextual Understanding: LLMs may lack sufficient contextual understanding of specific
use cases or niches, leading to code that doesn't fully meet the requirements’.

Security Risks: Security in Al-generated code is a crucial concern. LLMs can sometimes
generate code with vulnerabilities, requiring careful review and refinement to ensure security’.

Real-time Responsiveness with BigQuery

Before diving deeper into the comparison of RAG and LLM-Generated Code, it's crucial to
understand how BigQuery facilitates real-time data analysis. BigQuery offers several features
that enable real-time responsiveness:

Continuous Queries: BigQuery's continuous queries analyze streaming data in real-time,
allowing you to gain immediate insights from your data as it flows in"".

DataFrames Integration: Continuous queries integrate with BigQuery DataFrames, enabling
data scientists to work with real-time data directly within their Python notebooks'?.

Streaming APls: BigQuery provides streaming APIs for direct ingestion of data, supporting
event-driven architectures and real-time data pipelines’".

These capabilities make BigQuery a suitable platform for building LLM-powered applications
that require real-time responsiveness.

Comparing RAG and LLM-Generated Code for
BigQuery

When deciding between RAG and LLM-Generated Code for querying business data from
BigQuery with real-time responsiveness, consider the following table summarizing the pros and



cons:

Feature

Accuracy

Responsiveness

Complexity

Security

Cost

Maintainability

Contextual Understanding

RAG

Higher accuracy due to
grounding in external
knowledge °

Can be slower due to the
retrieval step ?

Simpler to implement and
maintain *

More secure as it relies on

trusted knowledge sources
2

Can be more cost-effective
as it doesn't require

extensive code generation
2

Easier to maintain as it
doesn't involve managing
code *

Leverages the LLM's
ability to understand
context and retrieve
relevant information *

LLM-Generated Code

Potential for errors in
generated code, leading to
inaccurate results ’

Potentially faster as it
directly executes code ’

Requires expertise in code
generation and execution °

Potential security risks if
the generated code is not
properly vetted ’

May incur higher costs due
to the need for code
execution resources ’

Can be more challenging
to maintain due to the
need for code updates and
debugging ’

May lack sufficient
contextual understanding,
leading to less accurate or
relevant code ’

Furthermore, both RAG and LLM-Generated Code face challenges when dealing with complex
queries that require converting natural language into SQL. These challenges include:

Context Collection: Gathering and integrating relevant information from various sources

within the database.

Retrieval: Efficiently retrieving the necessary data from BigQuery based on the user's

query'™.

SQL Generation: Accurately translating the user's intent into executable SQL queries™.

However, RAG offers a significant advantage in this context. By bridging the knowledge gap



between LLMs and enterprise databases, RAG allows businesses to leverage their own data for
more relevant and accurate insights™.

Choosing the Best Solution

For your specific scenario, RAG appears to be the more suitable approach. While
LLM-Generated Code offers potential speed advantages, RAG provides higher accuracy and
security, which are crucial when dealing with business-critical data. RAG's ability to ground the
LLM in your BigQuery data ensures that the generated insights are reliable and trustworthy.
Moreover, BigQuery's serverless architecture provides consistent performance, making it a
reliable platform for real-time LLM-powered applications’.

Recommended LLM Models for RAG

Several LLM models excel in RAG tasks. Here are a few recommendations:

Claude 3.5 Sonnet: This model demonstrates excellent performance across various RAG
tasks and supports contexts up to 200k tokens'®.

Gemini 1.5 Flash: Offers strong performance and supports contexts up to 1M tokens, making
it suitable for handling large amounts of data.

Qwen2-72B-Instruct: A powerful open-source model with great performance in short and
medium context RAG tasks®.

It's worth noting that open-source LLMs are becoming increasingly powerful and can be a viable
alternative to closed-source models for RAG tasks'’. When selecting an LLM, consider factors
like knowledge cut-off dates, context window size, and performance benchmarks to choose the
best fit for your specific needs'.

Conclusion

Integrating LLMs with Google BigQuery opens up new possibilities for real-time business
insights. While both RAG and LLM-Generated Code offer unique advantages, RAG's focus on
accuracy and grounding makes it the preferred choice for your scenario. By carefully selecting
the right LLM model, such as Claude 3.5 Sonnet or Gemini 1.5 Flash, and implementing a
robust RAG pipeline, you can unlock the full potential of your BigQuery data and gain a
competitive edge in today's data-driven world. RAG, combined with BigQuery's real-time
capabilities like continuous queries, enables you to generate accurate and reliable business
insights with the responsiveness required in today's dynamic business environment.

Works cited

1. BigQuery performance drives real time decisions | Google Cloud Blog, accessed December
12, 2024,
https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-de
cisions

2. What is RAG? - Retrieval-Augmented Generation Al Explained - AWS, accessed December



https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-decisions
https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-decisions

12, 2024, https://aws.amazon.com/what-is/retrieval- mented-generation

3. What is Retrieval-Augmented Generation(RAG) in LLM and How it works? | by Sahin Ahmed,

Data Scientist | Medium, accessed December 12, 2024,

https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-lim-and-how-i

t-works-a8c7 172

4. What Is Retrieval-Augmented Generation aka RAG - NVIDIA Blog, accessed December 12,

2024, https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

5. What is retrieval-augmented generation (RAG)? - IBM Research, accessed December 12,

2024, https://r rch.ibm.com/blog/retrieval- mented-generation-RA

6. What is Retrieval-Augmented Generation (RAG)? | Google Cloud, accessed December 12,

2024, https://cloud.google.com/use-cases/retrieval-augmented-generation

7. LLMs for Code Generation: A summary of the research on quality ..., accessed December 12,

2024, https://www.sonarsource.com/learn/lim- -generation

8. How do LLMs generate valid code syntax almost every time? - Reddit, accessed December

12, 2024,

https://www.reddit.com/r/learnmachinelearning/comments/18Izfe4/how_do_lims_generate_valid
ntax_alm

9. How does a Large Language Model (LLM) writes Code - Al Verse Info, accessed December

12, 2024, https://aiverseinfo.com/how-lIm-writes-code/
10. Large Language Models for Code Generation - Part 1 - Vectara, accessed December 12,

1. Should Bnguery be used for real-time data analytics? : r/googlecloud - Reddit, accessed
December 12, 2024,

https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery be_ used for_realtim
e_data/

12. BigQuery continuous queries makes data analysis real-time | Google Cloud Blog, accessed
December 12, 2024,

https://cloud.google.com/blog/products/data-analytics/bigguery-continuous-queries-makes-data-

analysis-real-time

13. Top 4 Challenges using RAG with LLMs to Query Database (Text-to-SQL) and how to solve

it. - Wren Al Cloud, accessed December 12, 2024,

https://getwren.ai/post/4-key-technical-challenges-using-rag-with-lims-to-query-database-texi-to-
I-and-how-to-solve-it

14. Announcing Select Al with Retrieval Augmented Generation (RAG) on Autonomous

Database - Oracle Blogs, accessed December 12, 2024,

https://blogs.oracle.com/datawarehousing/post/announcing-select-ai-with-rag-on-adb

15. LLMs For Structured Data - Neptune.ai, accessed December 12, 2024,

https://neptune.ai/blog/lim-for-structured-data

16. What's the Best LLM to Use for RAG? | by Naman Tripathi - Medium, accessed December

12, 2024, https://medium.com/@naman1011/whats-the-best-lim-to-use-for-rag-476bec1bfad7

17. Best LLMs for RAG: Top Open And Closed Source Models - Galileo, accessed December

12, 2024, https://www.galileo.ai/blog/best-llms-for-rag

18. What are the recommended LLM "backend" for RAG : r/LocalLLaMA - Reddit, accessed

December 12, 2024,

https://www.reddit.com/r/Locall LaM mments/17 what_are_the_recommen llm

ckend for rag/



https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-it-works-a8c79e35a172
https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-it-works-a8c79e35a172
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://cloud.google.com/use-cases/retrieval-augmented-generation
https://www.sonarsource.com/learn/llm-code-generation/
https://www.reddit.com/r/learnmachinelearning/comments/18lzfe4/how_do_llms_generate_valid_code_syntax_almost/
https://www.reddit.com/r/learnmachinelearning/comments/18lzfe4/how_do_llms_generate_valid_code_syntax_almost/
https://aiverseinfo.com/how-llm-writes-code/
https://www.vectara.com/blog/large-language-models-llms-for-code-generation-part-1
https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery_be_used_for_realtime_data/
https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery_be_used_for_realtime_data/
https://cloud.google.com/blog/products/data-analytics/bigquery-continuous-queries-makes-data-analysis-real-time
https://cloud.google.com/blog/products/data-analytics/bigquery-continuous-queries-makes-data-analysis-real-time
https://getwren.ai/post/4-key-technical-challenges-using-rag-with-llms-to-query-database-text-to-sql-and-how-to-solve-it
https://getwren.ai/post/4-key-technical-challenges-using-rag-with-llms-to-query-database-text-to-sql-and-how-to-solve-it
https://blogs.oracle.com/datawarehousing/post/announcing-select-ai-with-rag-on-adb
https://neptune.ai/blog/llm-for-structured-data
https://medium.com/@naman1011/whats-the-best-llm-to-use-for-rag-476bec1bfa97
https://www.galileo.ai/blog/best-llms-for-rag
https://www.reddit.com/r/LocalLLaMA/comments/17oy5q3/what_are_the_recommended_llm_backend_for_rag/
https://www.reddit.com/r/LocalLLaMA/comments/17oy5q3/what_are_the_recommended_llm_backend_for_rag/

	Leveraging LLMs for Real-Time Business Insights from Google BigQuery 
	Understanding Retrieval Augmented Generation (RAG) 
	Exploring LLM-Generated Code 
	Real-time Responsiveness with BigQuery 
	Comparing RAG and LLM-Generated Code for BigQuery 
	Choosing the Best Solution 
	Recommended LLM Models for RAG 
	Conclusion 
	Works cited 



