
Leveraging LLMs for Real-Time 
Business Insights from Google 
BigQuery 
The integration of large language models (LLMs) with data warehouses like Google BigQuery is 
revolutionizing how businesses extract valuable insights from their data1. This article explores 
two primary approaches to achieve this: Retrieval Augmented Generation (RAG) and 
LLM-Generated Code. We'll delve into the mechanics of each approach, analyze their pros and 
cons, and recommend the best solution for real-time business insights from your BigQuery data. 

Understanding Retrieval Augmented Generation 
(RAG) 
Retrieval Augmented Generation (RAG) enhances the capabilities of LLMs by grounding them 
in external knowledge sources2. Instead of solely relying on the information it was trained on, an 
LLM using RAG first retrieves relevant information from a designated knowledge base before 
generating a response. This approach involves identifying and retrieving contextually relevant 
information from external knowledge sources, such as your BigQuery database, to augment the 
LLM's knowledge and improve the quality of its responses3. The LLM then combines this 
retrieved knowledge with its internal knowledge to produce a more accurate and comprehensive 
answer4. 

RAG offers several advantages: 

●​ Reduced Hallucination: By grounding the LLM in factual data, RAG minimizes the risk of the 
model generating incorrect or nonsensical outputs4. 

●​ Improved Accuracy: Access to external knowledge sources ensures that the LLM's 
responses are based on the most current and relevant information5. 

●​ Enhanced Trust: RAG allows the LLM to cite its sources, enabling users to verify the 
information and trust the generated responses4. 

●​ Efficient Updates: Integrating new information is relatively easy with RAG, as it doesn't 
require retraining the entire model4. 

●​ Reduced Contradictions: RAG helps minimize contradictions and inconsistencies in the 
generated text by fine-tuning or prompt-engineering the LLM to generate text entirely based 
on the retrieved knowledge6. 

●​ Increased Business Control: RAG redirects the LLM to retrieve relevant information from 
pre-determined knowledge sources, giving businesses more control over the generated text 
output2. 

Exploring LLM-Generated Code 
While RAG focuses on augmenting the LLM's knowledge with external information, another 
approach involves leveraging the LLM's ability to generate code. LLM-Generated Code utilizes 



the code generation capabilities of LLMs to query and manipulate data in BigQuery7. In this 
approach, the LLM generates Python code based on the user's query, which is then executed to 
retrieve the required information from BigQuery8. The LLM learns the patterns and structures of 
different programming languages by training on vast amounts of code from various sources, 
such as GitHub repositories, Stack Overflow, and code snippets from websites9. 

Some benefits of LLM-Generated Code include: 

●​ Automation: Automating the code generation process can save developers time and effort7. 
●​ Efficiency: LLMs can generate code quickly, potentially leading to faster query execution and 

data retrieval7. 
●​ Flexibility: LLMs can generate code in various programming languages, providing flexibility 

in how you interact with your data10. 

However, it's essential to be aware of the potential limitations of this approach: 

●​ Code Complexity: LLMs can sometimes produce complex code blocks that are difficult to 
understand and troubleshoot7. 

●​ Training Data Limitations: The quality and scope of the training data significantly influence 
the performance of LLMs, and they may not always generate accurate or efficient code7. 

●​ Contextual Understanding: LLMs may lack sufficient contextual understanding of specific 
use cases or niches, leading to code that doesn't fully meet the requirements7. 

●​ Security Risks: Security in AI-generated code is a crucial concern. LLMs can sometimes 
generate code with vulnerabilities, requiring careful review and refinement to ensure security7. 

Real-time Responsiveness with BigQuery 
Before diving deeper into the comparison of RAG and LLM-Generated Code, it's crucial to 
understand how BigQuery facilitates real-time data analysis. BigQuery offers several features 
that enable real-time responsiveness: 

●​ Continuous Queries: BigQuery's continuous queries analyze streaming data in real-time, 
allowing you to gain immediate insights from your data as it flows in11. 

●​ DataFrames Integration: Continuous queries integrate with BigQuery DataFrames, enabling 
data scientists to work with real-time data directly within their Python notebooks12. 

●​ Streaming APIs: BigQuery provides streaming APIs for direct ingestion of data, supporting 
event-driven architectures and real-time data pipelines11. 

These capabilities make BigQuery a suitable platform for building LLM-powered applications 
that require real-time responsiveness. 

Comparing RAG and LLM-Generated Code for 
BigQuery 
When deciding between RAG and LLM-Generated Code for querying business data from 
BigQuery with real-time responsiveness, consider the following table summarizing the pros and 



cons: 

 

Feature RAG LLM-Generated Code 

Accuracy Higher accuracy due to 
grounding in external 
knowledge 5 

Potential for errors in 
generated code, leading to 
inaccurate results 7 

Responsiveness Can be slower due to the 
retrieval step 2 

Potentially faster as it 
directly executes code 7 

Complexity Simpler to implement and 
maintain 4 

Requires expertise in code 
generation and execution 9 

Security More secure as it relies on 
trusted knowledge sources 
2 

Potential security risks if 
the generated code is not 
properly vetted 7 

Cost Can be more cost-effective 
as it doesn't require 
extensive code generation 
2 

May incur higher costs due 
to the need for code 
execution resources 7 

Maintainability Easier to maintain as it 
doesn't involve managing 
code 4 

Can be more challenging 
to maintain due to the 
need for code updates and 
debugging 7 

Contextual Understanding Leverages the LLM's 
ability to understand 
context and retrieve 
relevant information 3 

May lack sufficient 
contextual understanding, 
leading to less accurate or 
relevant code 7 

Furthermore, both RAG and LLM-Generated Code face challenges when dealing with complex 
queries that require converting natural language into SQL. These challenges include: 

●​ Context Collection: Gathering and integrating relevant information from various sources 
within the database13. 

●​ Retrieval: Efficiently retrieving the necessary data from BigQuery based on the user's 
query13. 

●​ SQL Generation: Accurately translating the user's intent into executable SQL queries13. 

However, RAG offers a significant advantage in this context. By bridging the knowledge gap 



between LLMs and enterprise databases, RAG allows businesses to leverage their own data for 
more relevant and accurate insights14. 

Choosing the Best Solution 
For your specific scenario, RAG appears to be the more suitable approach. While 
LLM-Generated Code offers potential speed advantages, RAG provides higher accuracy and 
security, which are crucial when dealing with business-critical data. RAG's ability to ground the 
LLM in your BigQuery data ensures that the generated insights are reliable and trustworthy. 
Moreover, BigQuery's serverless architecture provides consistent performance, making it a 
reliable platform for real-time LLM-powered applications1. 

Recommended LLM Models for RAG 
Several LLM models excel in RAG tasks. Here are a few recommendations: 

●​ Claude 3.5 Sonnet: This model demonstrates excellent performance across various RAG 
tasks and supports contexts up to 200k tokens16. 

●​ Gemini 1.5 Flash: Offers strong performance and supports contexts up to 1M tokens, making 
it suitable for handling large amounts of data16. 

●​ Qwen2–72B-Instruct: A powerful open-source model with great performance in short and 
medium context RAG tasks16. 

It's worth noting that open-source LLMs are becoming increasingly powerful and can be a viable 
alternative to closed-source models for RAG tasks17. When selecting an LLM, consider factors 
like knowledge cut-off dates, context window size, and performance benchmarks to choose the 
best fit for your specific needs16. 

Conclusion 
Integrating LLMs with Google BigQuery opens up new possibilities for real-time business 
insights. While both RAG and LLM-Generated Code offer unique advantages, RAG's focus on 
accuracy and grounding makes it the preferred choice for your scenario. By carefully selecting 
the right LLM model, such as Claude 3.5 Sonnet or Gemini 1.5 Flash, and implementing a 
robust RAG pipeline, you can unlock the full potential of your BigQuery data and gain a 
competitive edge in today's data-driven world. RAG, combined with BigQuery's real-time 
capabilities like continuous queries, enables you to generate accurate and reliable business 
insights with the responsiveness required in today's dynamic business environment. 

Works cited 

1. BigQuery performance drives real time decisions | Google Cloud Blog, accessed December 
12, 2024, 
https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-de
cisions 
2. What is RAG? - Retrieval-Augmented Generation AI Explained - AWS, accessed December 

https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-decisions
https://cloud.google.com/blog/products/data-analytics/bigquery-performance-drives-real-time-decisions


12, 2024, https://aws.amazon.com/what-is/retrieval-augmented-generation/ 
3. What is Retrieval-Augmented Generation(RAG) in LLM and How it works? | by Sahin Ahmed, 
Data Scientist | Medium, accessed December 12, 2024, 
https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-i
t-works-a8c79e35a172 
4. What Is Retrieval-Augmented Generation aka RAG - NVIDIA Blog, accessed December 12, 
2024, https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/ 
5. What is retrieval-augmented generation (RAG)? - IBM Research, accessed December 12, 
2024, https://research.ibm.com/blog/retrieval-augmented-generation-RAG 
6. What is Retrieval-Augmented Generation (RAG)? | Google Cloud, accessed December 12, 
2024, https://cloud.google.com/use-cases/retrieval-augmented-generation 
7. LLMs for Code Generation: A summary of the research on quality ..., accessed December 12, 
2024, https://www.sonarsource.com/learn/llm-code-generation/ 
8. How do LLMs generate valid code syntax almost every time? - Reddit, accessed December 
12, 2024, 
https://www.reddit.com/r/learnmachinelearning/comments/18lzfe4/how_do_llms_generate_valid
_code_syntax_almost/ 
9. How does a Large Language Model (LLM) writes Code - AI Verse Info, accessed December 
12, 2024, https://aiverseinfo.com/how-llm-writes-code/ 
10. Large Language Models for Code Generation - Part 1 - Vectara, accessed December 12, 
2024, https://www.vectara.com/blog/large-language-models-llms-for-code-generation-part-1 
11. Should BigQuery be used for real-time data analytics? : r/googlecloud - Reddit, accessed 
December 12, 2024, 
https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery_be_used_for_realtim
e_data/ 
12. BigQuery continuous queries makes data analysis real-time | Google Cloud Blog, accessed 
December 12, 2024, 
https://cloud.google.com/blog/products/data-analytics/bigquery-continuous-queries-makes-data-
analysis-real-time 
13. Top 4 Challenges using RAG with LLMs to Query Database (Text-to-SQL) and how to solve 
it. - Wren AI Cloud, accessed December 12, 2024, 
https://getwren.ai/post/4-key-technical-challenges-using-rag-with-llms-to-query-database-text-to-
sql-and-how-to-solve-it 
14. Announcing Select AI with Retrieval Augmented Generation (RAG) on Autonomous 
Database - Oracle Blogs, accessed December 12, 2024, 
https://blogs.oracle.com/datawarehousing/post/announcing-select-ai-with-rag-on-adb 
15. LLMs For Structured Data - Neptune.ai, accessed December 12, 2024, 
https://neptune.ai/blog/llm-for-structured-data 
16. What's the Best LLM to Use for RAG? | by Naman Tripathi - Medium, accessed December 
12, 2024, https://medium.com/@naman1011/whats-the-best-llm-to-use-for-rag-476bec1bfa97 
17. Best LLMs for RAG: Top Open And Closed Source Models - Galileo, accessed December 
12, 2024, https://www.galileo.ai/blog/best-llms-for-rag 
18. What are the recommended LLM "backend" for RAG : r/LocalLLaMA - Reddit, accessed 
December 12, 2024, 
https://www.reddit.com/r/LocalLLaMA/comments/17oy5q3/what_are_the_recommended_llm_ba
ckend_for_rag/ 

https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-it-works-a8c79e35a172
https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-it-works-a8c79e35a172
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://cloud.google.com/use-cases/retrieval-augmented-generation
https://www.sonarsource.com/learn/llm-code-generation/
https://www.reddit.com/r/learnmachinelearning/comments/18lzfe4/how_do_llms_generate_valid_code_syntax_almost/
https://www.reddit.com/r/learnmachinelearning/comments/18lzfe4/how_do_llms_generate_valid_code_syntax_almost/
https://aiverseinfo.com/how-llm-writes-code/
https://www.vectara.com/blog/large-language-models-llms-for-code-generation-part-1
https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery_be_used_for_realtime_data/
https://www.reddit.com/r/googlecloud/comments/1eb5j5w/should_bigquery_be_used_for_realtime_data/
https://cloud.google.com/blog/products/data-analytics/bigquery-continuous-queries-makes-data-analysis-real-time
https://cloud.google.com/blog/products/data-analytics/bigquery-continuous-queries-makes-data-analysis-real-time
https://getwren.ai/post/4-key-technical-challenges-using-rag-with-llms-to-query-database-text-to-sql-and-how-to-solve-it
https://getwren.ai/post/4-key-technical-challenges-using-rag-with-llms-to-query-database-text-to-sql-and-how-to-solve-it
https://blogs.oracle.com/datawarehousing/post/announcing-select-ai-with-rag-on-adb
https://neptune.ai/blog/llm-for-structured-data
https://medium.com/@naman1011/whats-the-best-llm-to-use-for-rag-476bec1bfa97
https://www.galileo.ai/blog/best-llms-for-rag
https://www.reddit.com/r/LocalLLaMA/comments/17oy5q3/what_are_the_recommended_llm_backend_for_rag/
https://www.reddit.com/r/LocalLLaMA/comments/17oy5q3/what_are_the_recommended_llm_backend_for_rag/

	Leveraging LLMs for Real-Time Business Insights from Google BigQuery 
	Understanding Retrieval Augmented Generation (RAG) 
	Exploring LLM-Generated Code 
	Real-time Responsiveness with BigQuery 
	Comparing RAG and LLM-Generated Code for BigQuery 
	Choosing the Best Solution 
	Recommended LLM Models for RAG 
	Conclusion 
	Works cited 



