Part 1: Recall and Define

1. Method Overriding happens when a subclass redefines a method from
its parent with the same name and parameters.

2. Method Overloading means creating methods with the same name but
different parameters.

3. Dynamic Binding allows the program to decide which method to
execute at runtime.

4. Upcasting means assigning a subclass object to a superclass reference.

Downcasting means converting a superclass reference back to a

subclass type.

W

Part 2: Run the Code
(Output)

Java course

Programming course (Beginner)
Java-specific feature

Java course

Java course

Programming course (Advanced)
Java-specific feature
Programming course

Part 3: Think and Answer
Jgeal) B Ly

1. Which methods are overridden? showlnfo () in ProgramningCourse
)) and JavaCourse.

2. Which method is overloaded? showlnto (Strmg_ tevel) in
ProgrammingCourse.

Java course (because of dynamic

3. What will be the output of the first e . L
binding — it runs the version in

method call c1.showInfo ()?

JavaCourse).
4. Why is the call Because the method
pl.showInfo ("Advanced") valid, even showInfo (String) is defined in

though the variable type is ProgrammingCourse, so the compiler
ProgrammingCourse? allows it.

gl o8 Lay)

This is downcasting, converting the
reference c1 (of type Course) back to
the subclass JavaCourse to access its

unique methods.

5. What is happening when this line

executes: JavaCourse jl =
(JavaCourse) cl;

6. What happens if c1 refers to a
ProgrammingCourse object and we still
cast it to JavaCourse?

A ClassCastException will occur at
runtime.

7. What Java concept ensures that
cl.showInfo () calls the correct version
at runtime?

Dynamic Binding (Runtime
Polymorphism).

Part 4: Practice Tasks

Task 1:

Answer:

class PythonCourse extends ProgrammingCourse {
@Override
public void showInfo () {
System.out.println ("Python course");
}
}

// In main:

Course ¢ = new Course();
ProgrammingCourse p = new ProgrammingCourse () ;
JavaCourse J = new JavaCourse () ;

PythonCourse py = new PythonCourse() ;

c.showInfo();
p.showInfol();
j.showInfol();
py.showInfo () ;

Output:

General course
Programming course
Java course

Python course

Task 2:

Question: Try to call javaonly () using
Course cl = new JavaCourse () ; directly. What happens? Why? How can
you fix it?

Answer:

o {1t causes a compile-time error:
cannot find symbol: method javaOnly ()

e Reason: The reference type course doesn’t know about the
javaonly () method (it’s not declared in course).

e Fix: Use downcasting to access it:
° ((JavaCourse) cl) .javaOnly();

Output after fix:

Java-specific feature

Challenge Section Example (Hospital Theme)

class Hospital {
void showInfo () {
System.out.println ("General hospital");
}
}

class Department extends Hospital {
void showInfo() { // overriding
System.out.println ("Hospital department");
}

void showInfo (String dept) { // overloading
System.out.println ("Department: " + dept);
}
}

class EmergencyDept extends Department {
void showInfo() { // overriding again
System.out.println ("Emergency department");

}

void emergencyOnly () {
System.out.println ("Emergency team ready!");
}
}

public class HospitalDemo {
public static void main(String[] args) {
Hospital hl = new EmergencyDept () ; // upcasting
hl.showInfo(); // dynamic binding
Department dl = new EmergencyDept ()
dl.showInfo ("Cardiology") ; // overloading

EmergencyDept el = (EmergencyDept) hl; // downcasting
el.emergencyOnly () ;

Reflection Answers

1. Why is dynamic binding useful in real-world Java applications?
— It allows the correct method to run based on the object’s actual type
at runtime, enabling flexibility and extensibility (polymorphism).

2. What are the risks of downcasting?

— If the object isn’t really an instance of the subclass, it causes a
ClassCastException at runtime.

3. How does upcasting help achieve polymorphism?

— It allows one reference type (the superclass) to handle different
subclass objects, letting us write generalized and reusable code.

Lab 6

(Polymorphism and dynamic binding)

// Parent class

class Course {

public void showlInfo() {
System.out.printin("General course");
}

¥

// Child 1

class ProgrammingCourse extends Course {
/I overriding

@~Override

public void showlInfo() {

System.out.printin("Programming course");

/[overloading (same name, different params)

public void showlInfo(String level) {
System.out.printin("Programming course (" + level + ")");
}

¥
// Child 2 (more specific)

class JavaCourse extends ProgrammingCourse {
@~Override

public void showlInfo() {

System.out.printin("Java course");

}

public void javaOnly() {
System.out.println("Java-specific feature");
}

}

class PythonCourse extends ProgrammingCourse ({
@Override
public void showInfo () {
System.out.println ("Python course");

}

public class CourseApp {

public static void main(String[] args) {

/l 1) Normal object

JavaCourse j1 = new JavaCourse();

j1.showInfo(); // Java course

j1.showlInfo("Beginner"); // from ProgrammingCourse (overloading)
j1.javaOnly();

/I 2) Upcasting (actual = JavaCourse, declared = Course)
Course c1 = new JavaCourse(); // upcast

c¢1.showInfo(); // dynamic binding — calls JavaCourse.showlInfo()
/I 3) Another upcasting level

ProgrammingCourse p1 = new JavaCourse();

p1.showlInfo(); // Java course (dynamic binding)

p1.showlnfo("Advanced"); // calls overloaded version in ProgrammingCourse
// 4) Downcasting to access child-only method

if (c1 instanceof JavaCourse) {

JavaCourse j2 = (JavaCourse) c1; // downcast

j2.javaOnly();

Course ¢ = new Course();

ProgrammingCourse p = new ProgrammingCourse () ;
JavaCourse j = new JavaCourse();

PythonCourse py = new PythonCourse() ;

c.showInfo();
p.showInfol();
j.showInfol();
py.showInfo();

}

/I 5) Another example of overriding
Course c2 = new ProgrammingCourse();
c2.showlnfo(); // Programming course (not General course)

}

	Part 2: Run the Code
	Part 3: Think and Answer

