

Part 1: Recall and Define
1.​ Method Overriding happens when a subclass redefines a method from

its parent with the same name and parameters.
2.​ Method Overloading means creating methods with the same name but

different parameters.
3.​ Dynamic Binding allows the program to decide which method to

execute at runtime.
4.​ Upcasting means assigning a subclass object to a superclass reference.
5.​ Downcasting means converting a superclass reference back to a

subclass type.

Part 2: Run the Code
(Output)
Java course
Programming course (Beginner)
Java-specific feature
Java course
Java course
Programming course (Advanced)
Java-specific feature
Programming course

Part 3: Think and Answer
السؤال رقم الإجابة

1. Which methods are overridden?
showInfo() in ProgrammingCourse

and JavaCourse.

2. Which method is overloaded?
showInfo(String level) in

ProgrammingCourse.

3. What will be the output of the first
method call c1.showInfo()?

Java course (because of dynamic
binding — it runs the version in

JavaCourse).

4. Why is the call
p1.showInfo("Advanced") valid, even

though the variable type is
ProgrammingCourse?

Because the method
showInfo(String) is defined in

ProgrammingCourse, so the compiler
allows it.

السؤال رقم الإجابة

5. What is happening when this line
executes: JavaCourse j1 =

(JavaCourse) c1;

This is downcasting, converting the
reference c1 (of type Course) back to
the subclass JavaCourse to access its

unique methods.

6. What happens if c1 refers to a
ProgrammingCourse object and we still

cast it to JavaCourse?

A ClassCastException will occur at
runtime.

7. What Java concept ensures that
c1.showInfo() calls the correct version

at runtime?

Dynamic Binding (Runtime
Polymorphism).

Part 4: Practice Tasks

Task 1:

Answer:

class PythonCourse extends ProgrammingCourse {
 @Override
 public void showInfo() {
 System.out.println("Python course");
 }
}

// In main:
Course c = new Course();
ProgrammingCourse p = new ProgrammingCourse();
JavaCourse j = new JavaCourse();
PythonCourse py = new PythonCourse();

c.showInfo();
p.showInfo();
j.showInfo();
py.showInfo();

Output:

General course
Programming course
Java course
Python course

Task 2:

Question: Try to call javaOnly() using​
Course c1 = new JavaCourse(); directly. What happens? Why? How can
you fix it?

Answer:

●​ ❌ It causes a compile-time error:​
cannot find symbol: method javaOnly()

●​ Reason: The reference type Course doesn’t know about the
javaOnly() method (it’s not declared in Course).

●​ Fix: Use downcasting to access it:
●​ ((JavaCourse) c1).javaOnly();

Output after fix:

Java-specific feature

Challenge Section Example (Hospital Theme)
class Hospital {
 void showInfo() {
 System.out.println("General hospital");
 }
}

class Department extends Hospital {
 void showInfo() { // overriding
 System.out.println("Hospital department");
 }

 void showInfo(String dept) { // overloading
 System.out.println("Department: " + dept);
 }
}

class EmergencyDept extends Department {
 void showInfo() { // overriding again
 System.out.println("Emergency department");
 }

 void emergencyOnly() {
 System.out.println("Emergency team ready!");
 }
}

public class HospitalDemo {
 public static void main(String[] args) {
 Hospital h1 = new EmergencyDept(); // upcasting
 h1.showInfo(); // dynamic binding
 Department d1 = new EmergencyDept();
 d1.showInfo("Cardiology"); // overloading

 EmergencyDept e1 = (EmergencyDept) h1; // downcasting
 e1.emergencyOnly();
 }
}

Reflection Answers
1.​ Why is dynamic binding useful in real-world Java applications?​

→ It allows the correct method to run based on the object’s actual type
at runtime, enabling flexibility and extensibility (polymorphism).

2.​ What are the risks of downcasting?​
→ If the object isn’t really an instance of the subclass, it causes a
ClassCastException at runtime.

3.​ How does upcasting help achieve polymorphism?​
→ It allows one reference type (the superclass) to handle different
subclass objects, letting us write generalized and reusable code.

 Lab 6
(Polymorphism and dynamic binding)
// Parent class
class Course {
public void showInfo() {
System.out.println("General course");
}
}
// Child 1
class ProgrammingCourse extends Course {
// overriding
@Override
public void showInfo() {

System.out.println("Programming course");
}
// overloading (same name, different params)
public void showInfo(String level) {
System.out.println("Programming course (" + level + ")");
}
}
// Child 2 (more specific)
class JavaCourse extends ProgrammingCourse {
@Override
public void showInfo() {
System.out.println("Java course");
}
public void javaOnly() {
System.out.println("Java-specific feature");
}
}

class PythonCourse extends ProgrammingCourse {
 @Override
 public void showInfo() {
 System.out.println("Python course");
 }
}

public class CourseApp {
public static void main(String[] args) {
// 1) Normal object
JavaCourse j1 = new JavaCourse();
j1.showInfo(); // Java course
j1.showInfo("Beginner"); // from ProgrammingCourse (overloading)
j1.javaOnly();
// 2) Upcasting (actual = JavaCourse, declared = Course)
Course c1 = new JavaCourse(); // upcast
c1.showInfo(); // dynamic binding → calls JavaCourse.showInfo()
// 3) Another upcasting level
ProgrammingCourse p1 = new JavaCourse();
p1.showInfo(); // Java course (dynamic binding)

p1.showInfo("Advanced"); // calls overloaded version in ProgrammingCourse
// 4) Downcasting to access child-only method
if (c1 instanceof JavaCourse) {
JavaCourse j2 = (JavaCourse) c1; // downcast
j2.javaOnly();

Course c = new Course();
ProgrammingCourse p = new ProgrammingCourse();
JavaCourse j = new JavaCourse();
PythonCourse py = new PythonCourse();

c.showInfo();
p.showInfo();
j.showInfo();
py.showInfo();

}
// 5) Another example of overriding
Course c2 = new ProgrammingCourse();
c2.showInfo(); // Programming course (not General course)
}

}

	Part 2: Run the Code
	Part 3: Think and Answer

