MIT SLOAN SCHOOL OF MANAGEMENT

OPERATIONS RESEARCH MASTER'S PROGRAM

FIRST SEMESTER (YEAR 1, FALL): Mathematical Foundations and Basic OR Methods

Building Analytical Excellence from Mathematical Foundations to Optimization Applications

FIRST SEMESTER (Weeks 1-15): Foundation Sciences and OR Principles

Week 1: Introduction to Operations Research and Mathematical Foundations

Monday: Program Orientation and OR Overview

- Morning (4 hours):
 - o Program introduction and curriculum overview
 - History and evolution of operations research
 - o OR methodology and problem-solving approach
 - Introduction to OR applications across industries
- Afternoon (4 hours):
 - Overview of career paths in operations research
 - o Campus tour of computer labs and research facilities
 - o Introduction to software tools (Python, R, Excel)
 - Team-building activities and networking

Tuesday: Linear Algebra Fundamentals I

- Morning (4 hours):
 - Vector spaces and linear transformations
 - Matrix operations and properties
 - o Systems of linear equations
 - o Gaussian elimination and matrix factorization
- Afternoon (4 hours):
 - Eigenvalues and eigenvectors
 - Matrix decomposition techniques
 - o Applications in optimization
 - Problem-solving workshop

Wednesday: Probability Theory Foundations

• Morning (4 hours):

- o Probability spaces and axioms
- Random variables and distributions
- Expectation and variance
- Joint distributions and independence

• Afternoon (4 hours):

- Conditional probability and Bayes' theorem
- Limit theorems and convergence
- Probability simulation exercises
- Applications in OR contexts

Thursday: Introduction to Mathematical Programming

• Morning (4 hours):

- Optimization problem formulation
- Linear programming introduction
- Feasible regions and optimal solutions
- Graphical solution methods

Afternoon (4 hours):

- Mathematical modeling workshop
- LP formulation exercises
- o Introduction to optimization software
- Case study: Production planning

Friday: Computing for Operations Research

Morning (4 hours):

- Python programming for OR
- o NumPy and SciPy introduction
- o Data structures and algorithms
- Mathematical computing basics

Afternoon (4 hours):

- Programming exercises
- o Implementation of basic algorithms
- Week 1 reflection and preparation
- Software setup and troubleshooting

Assessment for Week 1:

- Diagnostic mathematics assessment (ungraded)
- Programming exercises (completion credit)
- LP formulation homework (formative feedback)
- Reflection paper on OR career goals

Reading Materials:

- "Introduction to Operations Research" by Hillier & Lieberman (McGraw-Hill Open Learning)
- "Linear Algebra and Its Applications" by Gilbert Strang (MIT OCW)
- "Introduction to Probability" by Dimitri Bertsekas (MIT OCW)
- "Python for Data Analysis" by Wes McKinney (O'Reilly Open Books)

Week 2: Linear Programming Theory and Methods

Monday: Linear Programming Theory

- Morning (4 hours):
 - Standard form and canonical form
 - Basic feasible solutions
 - Fundamental theorem of linear programming
 - Vertex enumeration methods
- Afternoon (4 hours):
 - Geometric interpretation of LP
 - Degeneracy and multiple optima
 - o Unbounded and infeasible solutions
 - Problem-solving workshop

Tuesday: Simplex Method I

- Morning (4 hours):
 - Simplex algorithm development
 - Simplex tableau method
 - o Pivot operations and optimality conditions
 - o Initial basic feasible solution
- Afternoon (4 hours):
 - Hand calculations practice
 - Simplex implementation
 - Cycling and degeneracy handling
 - Computational exercises

Wednesday: Statistics for Operations Research

- Morning (4 hours):
 - o Descriptive statistics and data visualization
 - Statistical inference and hypothesis testing
 - Confidence intervals
 - o Regression analysis basics
- Afternoon (4 hours):
 - Laboratory: Statistical analysis with R
 - Data analysis exercises
 - Statistical software introduction
 - Case studies in OR applications

Thursday: Linear Programming Applications I

- Morning (4 hours):
 - o Production planning problems
 - Diet and blending problems
 - Transportation problems
 - Assignment problems
- Afternoon (4 hours):
 - Model formulation workshop
 - Case study analysis
 - Software implementation
 - Industry applications

Friday: Computational Linear Programming

- Morning (4 hours):
 - o LP software introduction (CPLEX, Gurobi)
 - Python optimization libraries
 - Model implementation techniques
 - Sensitivity analysis
- Afternoon (4 hours):
 - Computer laboratory
 - o LP solver comparison
 - Large-scale problem solving
 - Week 2 review and preparation

Assessment for Week 2:

- Simplex method problem set (15%)
- Statistical analysis assignment (10%)
- LP formulation and solution project (15%)
- Software implementation exercise (10%)

Reading Materials:

- "Linear Programming" by Vasek Chvatal (Open Textbook Library)
- "The Simplex Method" lecture notes (Stanford OCW)
- "Statistics for Business and Economics" (OpenStax)
- "Optimization with Python" documentation

Week 3: Advanced Linear Programming and Duality

Monday: Simplex Method II

- Morning (4 hours):
 - o Two-phase method
 - o Big-M method

- Revised simplex method
- Computational efficiency considerations

Afternoon (4 hours):

- Implementation workshop
- Algorithm comparison
- Numerical stability issues
- o Advanced problem solving

Tuesday: Duality Theory

• Morning (4 hours):

- Primal-dual relationships
- Dual problem formulation
- Strong and weak duality theorems
- Complementary slackness conditions

Afternoon (4 hours):

- Dual simplex method
- Economic interpretation of duality
- Shadow prices and sensitivity
- o Problem-solving workshop

Wednesday: Network Flow Problems I

• Morning (4 hours):

- Network terminology and representation
- o Minimum cost flow problems
- Transportation and transshipment
- Network simplex method

Afternoon (4 hours):

- Network modeling exercises
- Specialized algorithms
- Computational advantages
- Applications workshop

Thursday: Sensitivity Analysis and Parametric Programming

• Morning (4 hours):

- Post-optimality analysis
- Range of optimality
- Range of feasibility
- Adding/deleting constraints and variables

Afternoon (4 hours):

- Parametric linear programming
- Sensitivity analysis tools
- Practical interpretation
- Case study applications

Friday: Mathematical Modeling Principles

Morning (4 hours):

- Model development process
- Problem structuring techniques
- Validation and verification
- Model complexity management

Afternoon (4 hours):

- Modeling workshop
- Team modeling exercises
- Model critique and improvement
- Week 3 review

Assessment for Week 3:

- Duality problems and proofs (15%)
- Network flow modeling project (15%)
- Sensitivity analysis assignment (10%)
- Mathematical modeling exercise (10%)

Reading Materials:

- "Linear Programming and Network Flows" by Bazaraa (Selected Chapters Open Access)
- "Duality Theory" lecture notes (MIT OCW)
- "Network Optimization" by Ahuja, Magnanti, and Orlin (Selected Chapters)
- "Mathematical Modeling" by Mark Meerschaert (Academic Press Open)

Week 4: Integer Programming and Combinatorial Optimization

Monday: Integer Programming Fundamentals

• Morning (4 hours):

- Integer programming formulations
- o Binary and mixed-integer models
- Modeling techniques with integer variables
- Logical constraints and disjunctions

Afternoon (4 hours):

- IP modeling workshop
- Facility location problems
- Set covering and packing
- Knapsack problems

Tuesday: Branch and Bound Method

Morning (4 hours):

- o Branch and bound algorithm
- Branching strategies
- Bounding techniques

- Fathoming rules
- Afternoon (4 hours):
 - Implementation exercises
 - Algorithm performance analysis
 - Computational complexity
 - Software tools for IP

Wednesday: Descriptive Analytics and Data Mining

- Morning (4 hours):
 - Exploratory data analysis
 - Clustering techniques
 - o Classification methods
 - Data preprocessing and cleaning
- Afternoon (4 hours):
 - Laboratory: Data mining with Python
 - Pattern recognition exercises
 - Business intelligence applications
 - Visualization techniques

Thursday: Combinatorial Optimization Problems

- Morning (4 hours):
 - o Traveling salesman problem
 - Vehicle routing problems
 - Scheduling problems
 - o Graph algorithms
- Afternoon (4 hours):
 - o Heuristic solution methods
 - Approximation algorithms
 - Metaheuristics introduction
 - Computational exercises

Friday: Project Management and Scheduling

- Morning (4 hours):
 - Project network models
 - Critical path method (CPM)
 - Program evaluation and review technique (PERT)
 - Resource-constrained scheduling
- Afternoon (4 hours):
 - Scheduling workshop
 - Software tools for project management
 - Case study analysis
 - Week 4 review

Assessment for Week 4:

• Integer programming formulation assignment (15%)

- Branch and bound implementation (15%)
- Data mining project (10%)
- Project scheduling case study (10%)

Reading Materials:

- "Integer Programming" by Laurence Wolsey (Selected Open Chapters)
- "Combinatorial Optimization" by Cook et al. (Algorithm Repository)
- "Data Mining: Concepts and Techniques" (Open Learning Resources)
- "Project Management: The Complete Guide" (PM Open Source)

Week 5: Stochastic Processes and Queueing Theory

Monday: Introduction to Stochastic Processes

- Morning (4 hours):
 - Stochastic process definitions
 - Markov chains and properties
 - State classification
 - o Transition matrices and steady-state analysis
- Afternoon (4 hours):
 - Markov chain analysis
 - Absorption probabilities
 - First passage times
 - Applications in OR

Tuesday: Queueing Theory Fundamentals

- Morning (4 hours):
 - Queueing system components
 - o Little's law
 - Poisson processes
 - Exponential service times
- Afternoon (4 hours):
 - M/M/1 queue analysis
 - M/M/c queue analysis
 - o Performance measures
 - System design implications

Wednesday: Advanced Queueing Models

- Morning (4 hours):
 - o M/G/1 queues
 - o G/M/1 queues
 - Network of queues
 - Priority queueing systems
- Afternoon (4 hours):

- Queueing analysis workshop
- Service system design
- Capacity planning applications
- o Performance optimization

Thursday: Simulation Methods I

- Morning (4 hours):
 - o Monte Carlo simulation
 - Random number generation
 - o Discrete event simulation
 - Simulation methodology
- Afternoon (4 hours):
 - Simulation laboratory
 - Model implementation
 - Output analysis
 - Verification and validation

Friday: Inventory Theory

- Morning (4 hours):
 - EOQ model and variations
 - Quantity discounts
 - o Stochastic inventory models
 - Multi-item inventory systems
- Afternoon (4 hours):
 - Inventory optimization
 - Supply chain applications
 - o Case study analysis
 - Week 5 review

Assessment for Week 5:

- Markov chain analysis problems (15%)
- Queueing system design project (15%)
- Simulation implementation (15%)
- Inventory optimization assignment (10%)

Reading Materials:

- "Introduction to Stochastic Processes" by Sheldon Ross (Open Chapters)
- "Queueing Theory" by Leonard Kleinrock (Selected Open Materials)
- "Simulation Modeling and Analysis" by Averill Law (Open Learning)
- "Inventory Management" (Supply Chain Open Course)

Week 6: Nonlinear Programming Introduction

Monday: Nonlinear Programming Fundamentals

Morning (4 hours):

- Nonlinear optimization problems
- Convex and concave functions
- Local vs. global optima
- Optimality conditions

• Afternoon (4 hours):

- Lagrange multipliers
- o Karush-Kuhn-Tucker conditions
- Constraint qualification
- Problem formulation exercises

Tuesday: Unconstrained Optimization

• Morning (4 hours):

- Gradient descent methods
- Newton's method
- Quasi-Newton methods
- Line search techniques

• Afternoon (4 hours):

- Algorithm implementation
- o Convergence analysis
- Computational exercises
- o Performance comparison

Wednesday: Constrained Optimization

• Morning (4 hours):

- Penalty and barrier methods
- Sequential quadratic programming
- Trust region methods
- Interior point methods

Afternoon (4 hours):

- Implementation workshop
- o Algorithm selection criteria
- o Practical considerations
- Software tools

Thursday: Decision Analysis I

• Morning (4 hours):

- Decision theory fundamentals
- Decision trees
- Expected value analysis
- Sensitivity analysis in decisions

Afternoon (4 hours):

- Multi-criteria decision making
- Utility theory

- Risk analysis
- o Decision modeling workshop

Friday: Forecasting Methods

- Morning (4 hours):
 - Time series analysis
 - Moving averages and exponential smoothing
 - Trend and seasonal models
 - o ARIMA models
- Afternoon (4 hours):
 - Forecasting laboratory
 - Model selection and validation
 - Business forecasting applications
 - Week 6 review

Assessment for Week 6:

- Nonlinear optimization problems (15%)
- Algorithm implementation project (15%)
- Decision analysis case study (10%)
- Forecasting project (10%)

Reading Materials:

- "Nonlinear Programming" by Dimitri Bertsekas (MIT OCW)
- "Convex Optimization" by Boyd and Vandenberghe (Free PDF)
- "Decision Analysis for Management Judgment" (Open Business School)
- "Forecasting: Principles and Practice" by Hyndman (Free Online)

Week 7: Supply Chain and Logistics Optimization

Monday: Supply Chain Management Fundamentals

- Morning (4 hours):
 - o Supply chain structure and dynamics
 - Bullwhip effect
 - Supply chain coordination
 - o Information sharing impacts
- Afternoon (4 hours):
 - Supply chain modeling
 - Network design problems
 - Facility location optimization
 - o Case study analysis

Tuesday: Transportation and Distribution

Morning (4 hours):

- o Vehicle routing problems
- Traveling salesman variations
- Location-routing problems
- Delivery scheduling

• Afternoon (4 hours):

- Routing optimization workshop
- o Heuristic solution methods
- Software applications
- Industry case studies

Wednesday: Production Planning and Scheduling

• Morning (4 hours):

- Aggregate production planning
- Master production scheduling
- Material requirements planning
- Capacity planning

Afternoon (4 hours):

- o Production optimization models
- o Scheduling algorithms
- Manufacturing applications
- o Performance evaluation

Thursday: Quality Control and Six Sigma

• Morning (4 hours):

- Statistical quality control
- Control charts
- Process capability analysis
- o Design of experiments

Afternoon (4 hours):

- Quality improvement workshop
- Six Sigma methodology
- Quality optimization
- Case study applications

Friday: Service Operations

• Morning (4 hours):

- o Service system design
- Capacity management
- Revenue management basics
- Service quality optimization

• Afternoon (4 hours):

- Service operations workshop
- o Performance measurement
- Service improvement strategies
- Week 7 review

Assessment for Week 7:

- Supply chain optimization project (15%)
- Vehicle routing implementation (15%)
- Production planning assignment (10%)
- Quality control analysis (10%)

Reading Materials:

- "Supply Chain Management: Strategy, Planning and Operation" by Chopra (Open Chapters)
- "Vehicle Routing: Problems, Methods, and Applications" (Transportation Research)
- "Production and Operations Management" (Open Textbook Library)
- "Quality Control Handbook" (ASQ Open Resources)

Week 8: Financial Engineering and Risk Management

Monday: Financial Optimization

- Morning (4 hours):
 - o Portfolio optimization
 - Mean-variance analysis
 - Capital asset pricing model
 - Risk-return trade-offs
- Afternoon (4 hours):
 - Portfolio construction workshop
 - Optimization under uncertainty
 - Financial modeling
 - Software applications

Tuesday: Risk Analysis and Management

- Morning (4 hours):
 - Risk measurement techniques
 - Value at risk (VaR)
 - Scenario analysis
 - o Monte Carlo methods in finance
- Afternoon (4 hours):
 - Risk modeling laboratory
 - Stress testing
 - Risk optimization
 - Financial applications

Wednesday: Game Theory Fundamentals

- Morning (4 hours):
 - Strategic decision making

- Nash equilibrium
- o Zero-sum and non-zero-sum games
- Cooperative and non-cooperative games

Afternoon (4 hours):

- Game theory applications
- Auction theory
- Mechanism design
- Business strategy implications

Thursday: Behavioral Operations Research

Morning (4 hours):

- Behavioral decision theory
- Cognitive biases in decision making
- Bounded rationality
- Human factors in OR

• Afternoon (4 hours):

- Behavioral experiments
- Decision support systems
- Human-computer interaction
- Practical implications

Friday: Ethics and Professional Practice

Morning (4 hours):

- o Ethical considerations in OR
- Professional responsibility
- Data privacy and security
- Social impact of OR applications

Afternoon (4 hours):

- Ethics case studies
- o Professional development
- Career planning
- Week 8 review

Assessment for Week 8:

- Portfolio optimization project (15%)
- Risk analysis assignment (15%)
- Game theory problems (10%)
- Ethics case study analysis (10%)

Reading Materials:

- "Portfolio Selection" by Harry Markowitz (Nobel Prize Papers)
- "Risk Management and Financial Institutions" by John Hull (Open Chapters)
- "Game Theory: An Introduction" by Steven Tadelis (Open Course)
- "Ethics in Operations Research" (INFORMS Guidelines)

Week 9: Data Analytics and Machine Learning for OR

Monday: Statistical Learning Theory

- Morning (4 hours):
 - o Supervised vs. unsupervised learning
 - o Bias-variance tradeoff
 - Cross-validation techniques
 - Model selection criteria
- Afternoon (4 hours):
 - Machine learning workshop
 - Algorithm comparison
 - o Performance evaluation
 - Python implementation

Tuesday: Classification and Regression

- Morning (4 hours):
 - Linear and logistic regression
 - Decision trees
 - Support vector machines
 - o Ensemble methods
- Afternoon (4 hours):
 - Classification laboratory
 - Business applications
 - Model interpretation
 - Predictive analytics

Wednesday: Clustering and Dimensionality Reduction

- Morning (4 hours):
 - K-means clustering
 - Hierarchical clustering
 - o Principal component analysis
 - Factor analysis
- Afternoon (4 hours):
 - Clustering workshop
 - Data visualization
 - Market segmentation
 - o Pattern recognition

Thursday: Optimization in Machine Learning

- Morning (4 hours):
 - o Optimization problems in ML
 - Gradient descent variations
 - Regularization techniques

- Hyperparameter optimization
- Afternoon (4 hours):
 - ML optimization laboratory
 - Algorithm tuning
 - o Performance optimization
 - Scalability considerations

Friday: Big Data and Analytics

- Morning (4 hours):
 - Big data challenges
 - Distributed computing
 - Data storage and processing
 - Analytics at scale
- Afternoon (4 hours):
 - Big data tools workshop
 - Cloud computing platforms
 - Real-time analytics
 - Week 9 review

Assessment for Week 9:

- Machine learning implementation project (15%)
- Classification/regression assignment (15%)
- Clustering analysis report (10%)
- Big data case study (10%)

Reading Materials:

- "The Elements of Statistical Learning" by Hastie, Tibshirani, Friedman (Free PDF)
- "Introduction to Statistical Learning" by James et al. (Free PDF)
- "Pattern Recognition and Machine Learning" by Christopher Bishop (Selected Chapters)
- "Big Data Analytics" (Open Data Science Resources)

Week 10: Advanced Topics and Integration

Monday: Robust Optimization

- Morning (4 hours):
 - Uncertainty in optimization
 - o Robust optimization framework
 - Ellipsoidal and polyhedral uncertainty
 - Robust counterparts
- Afternoon (4 hours):
 - o Robust optimization modeling
 - Applications in finance and operations

- Software implementation
- Case studies

Tuesday: Multi-objective Optimization

Morning (4 hours):

- Pareto optimality
- Scalarization methods
- Goal programming
- o Interactive methods

• Afternoon (4 hours):

- Multi-objective modeling workshop
- Trade-off analysis
- Decision support tools
- Applications

Wednesday: Metaheuristics and Evolutionary Algorithms

• Morning (4 hours):

- Genetic algorithms
- Simulated annealing
- o Tabu search
- o Particle swarm optimization

Afternoon (4 hours):

- Metaheuristics laboratory
- Algorithm implementation
- Parameter tuning
- o Performance comparison

Thursday: Operations Research in Healthcare

• Morning (4 hours):

- Healthcare delivery systems
- Resource allocation in hospitals
- o Scheduling medical staff
- Emergency services optimization

Afternoon (4 hours):

- Healthcare OR workshop
- Case study analysis
- Policy implications
- Quality improvement

Friday: Consulting and Communication Skills

• Morning (4 hours):

- Consulting methodology
- o Client relationship management
- o Problem diagnosis
- Solution implementation

• Afternoon (4 hours):

- Presentation skills workshop
- Technical communication
- Report writing
- o Week 10 review

Assessment for Week 10:

- Robust optimization project (15%)
- Multi-objective optimization assignment (15%)
- Metaheuristics implementation (15%)
- Healthcare OR case study (10%)
- Consulting simulation exercise (10%)

Reading Materials:

- "Robust Optimization" by Ben-Tal, El Ghaoui, Nemirovski (Selected Chapters)
- "Multiple Criteria Decision Analysis" by Belton and Stewart (Open Chapters)
- "Metaheuristics: From Design to Implementation" by Talbi (Open Access)
- "Healthcare Operations Research" (Health OR Society Resources)

Week 11: Industry Applications and Case Studies

Monday: Manufacturing and Industry 4.0

- Morning (4 hours):
 - Smart manufacturing systems
 - loT and data analytics in manufacturing
 - o Predictive maintenance
 - Digital twin technology
- Afternoon (4 hours):
 - Manufacturing optimization workshop
 - o Industry 4.0 case studies
 - Technology integration
 - Future trends analysis

Tuesday: Energy and Utilities Optimization

- Morning (4 hours):
 - Electric power systems
 - Renewable energy integration
 - Smart grid optimization
 - Energy trading and markets
- Afternoon (4 hours):
 - o Energy optimization models
 - Sustainability considerations
 - Policy analysis

Case study applications

Wednesday: Transportation and Logistics Systems

Morning (4 hours):

- Urban transportation planning
- o Traffic flow optimization
- Public transit systems
- Freight transportation

• Afternoon (4 hours):

- Transportation modeling workshop
- GIS and routing applications
- Policy implications
- Smart city initiatives

Thursday: Telecommunications and Network Optimization

Morning (4 hours):

- Network design and capacity planning
- o Routing in communication networks
- Quality of service optimization
- o 5G network challenges

• Afternoon (4 hours):

- Network optimization workshop
- Simulation and analysis
- Technology trends
- Business applications

Friday: E-commerce and Digital Platforms

• Morning (4 hours):

- Online marketplace optimization
- o Recommendation systems
- Dynamic pricing strategies
- o Platform economics

Afternoon (4 hours):

- o Digital business models
- A/B testing and experimentation
- Customer analytics
- Week 11 review

Assessment for Week 11:

- Industry application project (choose one domain) (20%)
- Technology trend analysis (10%)
- Case study presentation (10%)
- Digital platform optimization assignment (10%)

Reading Materials:

- "Industry 4.0: The Industrial Internet of Things" (Open Industry Resources)
- "Smart Grid: Fundamentals of Design and Analysis" (IEEE Open Access)
- "Transportation Planning and Technology" (Open Transportation Library)
- "Platform Revolution" by Parker, Van Alstyne, Choudary (Selected Chapters)

Week 12: Advanced Simulation and Modeling

Monday: Monte Carlo Methods

- Morning (4 hours):
 - Monte Carlo integration
 - Importance sampling
 - Variance reduction techniques
 - o Markov Chain Monte Carlo
- Afternoon (4 hours):
 - Monte Carlo laboratory
 - Financial applications
 - o Risk assessment
 - Computational efficiency

Tuesday: Discrete Event Simulation Advanced Topics

- Morning (4 hours):
 - Advanced simulation concepts
 - Input modeling and analysis
 - Output analysis and confidence intervals
 - o Optimization via simulation
- Afternoon (4 hours):
 - Simulation modeling workshop
 - o Complex system simulation
 - o Animation and visualization
 - Validation techniques

Wednesday: System Dynamics

- Morning (4 hours):
 - System thinking and feedback loops
 - Stock and flow models
 - Policy design and testing
 - o Business dynamics
- Afternoon (4 hours):
 - System dynamics laboratory
 - Model building exercises
 - Policy simulation
 - Organizational learning

Thursday: Agent-Based Modeling

Morning (4 hours):

- Agent-based modeling concepts
- Emergent behavior
- Social systems modeling
- Market simulation

• Afternoon (4 hours):

- ABM implementation
- NetLogo programming
- Complex adaptive systems
- Applications in business

Friday: Model Integration and Validation

• Morning (4 hours):

- Multi-method modeling
- Model integration techniques
- Verification and validation
- Credibility assessment

Afternoon (4 hours):

- Integrated modeling workshop
- Model documentation
- o Quality assurance
- Week 12 review

Assessment for Week 12:

- Monte Carlo implementation project (15%)
- Discrete event simulation model (15%)
- System dynamics model (15%)
- Agent-based model (15%)
- Model validation report (10%)

Reading Materials:

- "Monte Carlo Methods in Finance" by Peter Jäckel (Selected Open Chapters)
- "Discrete-Event System Simulation" by Banks et al. (Open Learning)
- "Business Dynamics: Systems Thinking and Modeling" by John Sterman (MIT Sloan)
- "Agent-Based Modeling: A Guide for Social Scientists" (Open ABM Resources)

Week 13: Professional Development and Research Methods

Monday: Research Methodology in OR

Morning (4 hours):

- Research design and methodology
- Literature review techniques
- Hypothesis formulation and testing

- Empirical research methods
- Afternoon (4 hours):
 - Research proposal development
 - Data collection strategies
 - Statistical analysis planning
 - Research ethics

Tuesday: Writing and Publishing in OR

- Morning (4 hours):
 - Academic writing skills
 - Journal paper structure
 - Peer review process
 - Conference presentations
- Afternoon (4 hours):
 - Writing workshop
 - Paper critique exercises
 - Presentation preparation
 - Publication strategies

Wednesday: Professional Networking and Career Development

- Morning (4 hours):
 - o Professional organizations (INFORMS, etc.)
 - Networking strategies
 - Career paths in OR
 - o Industry vs. academic careers
- Afternoon (4 hours):
 - o LinkedIn and online presence
 - Interview preparation
 - Salary negotiation
 - Professional development planning

Thursday: Grant Writing and Funding

- Morning (4 hours):
 - Funding sources for OR research
 - Grant proposal writing
 - Budget development
 - Collaboration strategies
- Afternoon (4 hours):
 - Grant writing workshop
 - Proposal review process
 - Success strategies
 - Research project management

Friday: Final Project Preparation

• Morning (4 hours):

- Final project guidelines
- o Project selection criteria
- Methodology planning
- Resource allocation

• Afternoon (4 hours):

- Project proposal presentations
- Peer feedback sessions
- Advisor meetings
- Week 13 review

Assessment for Week 13:

- Research proposal (15%)
- Academic writing assignment (10%)
- Professional development plan (10%)
- Grant proposal outline (10%)
- Final project proposal presentation (15%)

Reading Materials:

- "The Craft of Research" by Booth, Colomb, Williams (University of Chicago Press)
- "Writing for Academic Journals" by Rowena Murray (Open University)
- "A Field Guide to Grad School" (Various Open Resources)
- "Grant Writing for Dummies" by Beverly Browning (Selected Chapters)

Week 14: Capstone Project Development

Monday: Project Planning and Management

- Morning (4 hours):
 - Project scope definition
 - Work breakdown structure
 - Timeline development
 - o Risk assessment
- Afternoon (4 hours):
 - Project management tools
 - Agile methodology
 - o Team collaboration
 - Progress tracking

Tuesday: Data Collection and Analysis

- Morning (4 hours):
 - Data gathering strategies
 - o Primary vs. secondary data
 - Data quality assessment
 - Exploratory analysis

• Afternoon (4 hours):

- o Data analysis workshop
- o Statistical software usage
- Visualization techniques
- Results interpretation

Wednesday: Model Development and Implementation

• Morning (4 hours):

- Model selection and formulation
- Algorithm development
- Software implementation
- o Performance evaluation

• Afternoon (4 hours):

- Implementation workshop
- Debugging and testing
- Optimization and tuning
- Validation procedures

Thursday: Results Analysis and Interpretation

• Morning (4 hours):

- Statistical significance testing
- Sensitivity analysis
- Robustness checks
- Managerial implications

• Afternoon (4 hours):

- Results presentation workshop
- Visualization best practices
- Storytelling with data
- Recommendation development

Friday: Project Documentation and Presentation

• Morning (4 hours):

- Technical documentation
- User manuals and guides
- Code documentation
- Reproducibility considerations

Afternoon (4 hours):

- Final presentation preparation
- Slide design and delivery
- Q&A preparation
- Week 14 review

Assessment for Week 14:

- Project plan and timeline (10%)
- Data analysis report (15%)

- Model implementation (20%)
- Results analysis (15%)
- Technical documentation (10%)

Reading Materials:

- "Project Management: A Guide to the Project Management Body of Knowledge" (PMI)
- "The Visual Display of Quantitative Information" by Edward Tufte
- "Made to Stick" by Chip Heath and Dan Heath
- "Presentation Zen" by Garr Reynolds (Selected Chapters)

Week 15: Final Presentations and Course Integration

Monday: Final Project Presentations I

- Morning (4 hours):
 - Student project presentations (Group A)
 - Peer evaluation and feedback
 - Q&A sessions
 - o Presentation skills assessment
- Afternoon (4 hours):
 - Student project presentations (Group B)
 - Industry panel feedback
 - o Best practices discussion
 - Lessons learned sharing

Tuesday: Final Project Presentations II

- Morning (4 hours):
 - Student project presentations (Group C)
 - o Cross-disciplinary insights
 - Innovation showcase
 - Technology demonstrations
- Afternoon (4 hours):
 - Student project presentations (Group D)
 - Industry applications discussion
 - Future research opportunities
 - Collaboration possibilities

Wednesday: Course Integration and Synthesis

- Morning (4 hours):
 - OR methodology review
 - Mathematical foundations recap
 - Algorithm and software summary
 - Application domain insights

• Afternoon (4 hours):

- Knowledge integration workshop
- Concept mapping exercises
- Problem-solving strategies
- Cross-cutting themes

Thursday: Industry Perspectives and Future Trends

Morning (4 hours):

- o Guest speaker: Industry practitioners
- Current challenges in OR
- Emerging technologies impact
- o Career opportunities discussion

Afternoon (4 hours):

- Future trends analysis
- Technology roadmap
- Skills development planning
- Continuous learning strategies

Friday: Final Evaluation and Next Steps

• Morning (4 hours):

- o Comprehensive course review
- Final examination
- Course evaluation and feedback
- Achievement assessment

Afternoon (4 hours):

- Second semester preview
- Summer preparation activities
- Internship opportunities
- Academic and career planning

Assessment for Week 15:

- Final project presentation (25%)
- Peer evaluation of presentations (5%)
- Course integration essay (10%)
- Final examination (25%)
- Course reflection and evaluation (5%)

Reading Materials:

- "Operations Research: A Comprehensive Introduction" (Course Summary)
- "Future Directions in Operations Research" (INFORMS Publications)
- "Skills for the 21st Century OR Professional" (INFORMS Career Resources)
- "Continuous Learning in OR" (Professional Development Guidelines)

SEMESTER ASSESSMENT SUMMARY

Total Grade Distribution:

Weekly Assignments and Problem Sets: 30%

• Midterm Examinations (2): 20%

Capstone Project: 25%Final Examination: 15%

Class Participation and Presentations: 10%

Key Learning Outcomes Achieved:

- 1. Master fundamental mathematical techniques for operations research
- 2. Formulate and solve linear and integer programming problems
- 3. Apply stochastic models and simulation methods
- 4. Implement optimization algorithms using modern software
- 5. Analyze real-world problems using OR methodology
- 6. Communicate technical results to diverse audiences
- 7. Conduct independent research in operations research

Preparation for Second Semester: Students will be prepared to tackle advanced topics including:

- Nonlinear and stochastic programming
- Advanced simulation and modeling
- Specialized application areas
- Independent research projects
- Industry consulting experiences