Emergency viva topics

Contents

Cardiac arrest	3
Pulmonary embolism	4
ACS	6
Acute LVF	7
HTN emergencies	8
Shock	10
Anaphylactic shock	11
Arrhythmia	12
Tachy	12
bradycardia	13
Acute severe asthma	13
COPD exacerbation	14
Pneumothorax	17
Hemoptysis	18
Pneumonia	19
Sepsis	20
Acute fever	20
Dengue	20
Addisonian crisis	23
Thyrotoxic crisis	24
Myxedema coma	24
DKA HHS	24
Pituitary apoplexy	26
Hyponatraemia	26
Hypercalcemia	29
Confused elderly	29
Variceal bleeding	29
Acute liver failure	31
Acute / cubacute diarrhea in ulcerative colitic	22

Status epilepsy	32
stroke	35
Bacterial meningitis	37
Snake bite	37
Paracetamol overdose	40
TCAD	41
Kaneru / digoxin	41
Organophosphate	
Respiratory failure	42
AKI	43
SEPTIC ARTHRITIS	43
Summaries	43

Cardiac arrest

Response, breathing, pulse, call for help

Chest compressions

100-120/min

Over middle of the lower half of the sternum

5-6 cm depth

Allow complete recoil

ETCO2 > 10 mmHg indicate adequate compressions

Oxygenation – ventilations 30:2

Triple manouvre

OT airway (philtrum to tragus / angle of mandible) or LMA. Quick intubation by an experienced person (LMA does not prevent aspiration)

Continuous ventilation possible only after ETT

Defibrillator – rhythm check AFAP, < 10s

Shockable – pulseless VT, VF 200.

Non shockable – PEA / asystole adrenaline 1:10000 10 mL IV push, repeated every 4 minutes (every other rhythm check)

Amiodarone 300 mg IV push and **adrenaline** 1 mg (1: 10 000 in 10 mL) after the 3rd consecutive shock Can repeat after the 5th shock at 150 mg dose as IV push Lidocaine 1mg/kg is an alternative

Look for reversible causes

Hypoxia Hypovolemia Hypothermia

Hyper/hypokalaemia, Ca

Thrombosis – PE, MI Tension

Tamponade

Toxin

ROSC

Pulse, BP, SpO2 / arterial BP waveform Sustained rise in ETCO2 over 35-40 mmHg is the best marker

Post arrest

Ventilation, SpO2 94 Circulation dobutamine Higher care Hypothermia 4 C NS / Hartman IV 1-2 L

If following commands – cath lab???

SVT 50-100

AF 120-200 200

VT 100

VF 100-200 360

Acute chest pain

- 1. MI
- 2. PE
- 3. AD
- 4. Pneumothorax
- 5. GORD
- 6. Acute pericarditis

Acute SOB

- 1. LVF/MI
- 2. Acute severe asthma / COPD
- 3. PE
- 4. Pneumothorax
- 5. Cardiac tamponade
- 6. Anaphylaxis
- 7. Acidosis metabolic

Pulmonary embolism

Confirm Dx

Old classes: Massive - I	nypotension	/	Submassive (hig	h markers)	/	Low risk
New classes : high risk ((hypotension)	/	IM risk (PESI III/	'IV) /	low ris	sk (PESI I/II)
Dead space ☐ surfactan	t resorption 🗆 o	collapse.	Infarct rare, if oc	curs Hptysis,	, pleuriti	c pain
Well's score – to detern	nine probability	of PE				
PESI score – for risk asse Background (age, cance Hestia score – to detern	r, CCF, lung dise				mentati	ion)
Dx & Rx Hypotensive patient Normotensive patient	CTPA / TTE : RV	/ overloa	nd fibrinolysis			

	PE likely (Well) □ CTPA □ confirm
	PE unlikely (Well) □ D-dimer □ CTPA □ confirm
	Assess risk
	PESI III/IV : intermediate
	RV strain AND high TnI/BNP-high: AC, consider rescue reperfusion Neither: IM-low risk: AC
	PESI I/II: low risk: Consider early Discharge on OACs. Subsegmental PEs w/o DVTs may not benefit from ACs at all
Suppo	rtive
ECG	tachy, AF, arrhythmia, RV strain, RBBB, S1Q3T3
2DE	RV strain, empty left heart. Typical – McConnell sign – akinetic mid wall and normal apex of RV.
Fibrino SK	plysis
	250 000 IU over 30 min ☐ 100 000 IU/h IVI for 24h OR
	1 500 000 IU over 2h
rtPA	
urokina	ISE

	SK	rtPA	
	Binds to plasminogen and converts to plasmin	Binds to fibrin and activates plasminogen within the clot	
	250 000 IU over 30 min ☐ 100 000 IU/h IVI for 24h OR 1 500 000 IU over 2h	100 mg IV over 2h OR 0.6 mg/kg (max 50 mg) over 15 min	
UFH	Stop during SK infusion	Continue during rtPA infusion	Stop UK infusion
LMWH / fonda			
	Hypotension, anaphylaxis, bleeding		

Shorter duration infusions achieve faster T'lysis, but not FDA approved, Small scale head to head comparisons shows equal efficacy. rtPA preferred due to short duration of infusion

Anticoagulation

other - TNK

LMWH / fonda

Give T'lysis Start UFH short term infusion after 12h from enox or 24h from fonda dose (risk of bleeding and need for rapid reversal) before restarting LMWH

Half dose – weak recommendation

Low dose catheter directed reperfusion : effective but needs expertise

Surgical embolectomy – when F'lysis is CIn or fails

PEITHO (Pul EMb Thrombolysis trial)

UFH + TNK bolus Vs UFH + placebo for patients with **submassive PE** (intermediate risk PE) TNK group had less deaths / HD collapse within 7d but greater major bleeding, ICH. Risk greater than benefit. Therefore, thrombolysis not recommended for submassive PE (PE without hypotension)

Anticoagulation

UFH / enox / fonda
VKA / NOACs – RECOVER, EINSTEIN, AMPLIFY, Hokusai et al

Assess for the cause

Cancer Thrombophilia – APLS, familial, PRV, CTD Immobility – air travel, post Sx

Treatment outline

- 1. Hypotension?
- 2. Wells, D dimer, CTPA, TTE, PESI
- 3. Anticoagulation
- 4. T'lysis SK / rtPA / UK- if this fails, surgery preferred over re T'lysis
- 5. Surgical embolectomy
- 6. Catheter directed T'lysis
- 7. IVC filter

PE in pregnancy – same management. If peripartum consider surgical options over T'lysis

ACS

STEMI equivalents

deWinter

Wellens – dynamic. Poor response to Tlysis, needs angio and reperfusion. 75% get STEMI within 1 week STE in aVR

LBBB with Sgarbossa Isolated posterior MI Upright T in V1

LBBB and RBBB in a pt with CFx of ongoing ischaemic pain – need angio coz STEMI cannot be ruled out

Acute LVF

Hx – orthopnea, chest pain

Ex –rapid thread pulse, cold clammy peripheries, high JVP, gallop, cardiomegaly, basal crackles, dependent edema

Classification

Cold / Warm / wet / dry Killip

- I no signs
- II rales and gallop
- III frank pulmonary edema
- IV hypoperfusion

Management

Congestion – prop up, O2, freusemide, GTN, CPAP, Ultrafiltration, ventilation Hypoperfusion – inotropes, fluid challenge if dry, LVAD, IABP Treat the cause Prevent DVT

- 1. Monitor
 - a. HR BP SpO2, IPOP, Cr, Sy, Signs
- 2. lx
- a. ECG, 2DE
- b. BNP / NT pro BNP / MR proANP -
- c. Cr, SE, LFT
- d. Procalcitonin / CRP, FBC, UFR, CXR
- e. TSH both hypo hyper cause acHF. Recommended to be done
- 3. Oxygen if < 90% / PaO2 < 60 mmHg
- 4. IV frusemide: bolus / infusion. Min 20-40mg IV bolus. If already on frusemide, give a doubled dose. Can repeat 2 hourly, doubling the dose. Max dose per 24h: 400 mg. IV 5-10 mg/hour
- 5. GTN as long as SBP > 90 (ESC 2016)
 - a. Reduce pre and after load may increase SV
 - b. Reduce pulmonary congestion
 - c. Caution in MS and AS
 - d. 10-20 mcg/min, max 200 mcg/min
- 6. CPAP / BiPAP SpO2 < 90%, RR > 25/min. Caution: hypotension
- 7. Ventilation

In: hypoxia (< 60 mmHg) / hypercapnia (> 50 mmHg) / acidosis (< 7.35 - ?resp)

- 8. Inotropes for symptomatic hypotension
 - a. Dob / Dop / levosi / milrinone (latter 2 circumvents BB effect. Both are inodilators hypotension may worsen)
 - b. Vasopressor Norad
- 9. Mechanical circulatory support
 - a. IABP ACS, peri op, myocarditis
 - b. LVAD
- 10. DVT prevention

11. Rx the ppt cause – CHAMP

- a. ACS revasc
- b. HTN vasodilator IV
- c. Arrhythmia BB / digoxin / amoidraone / TPM
- d. Mechanical IE, post MI mech complication, valve disease
- e PF
- f. Infection- Abtc

Dob B1 B2 5-20 micg/kg/min

Adr B > alfa
NA alfa > B
Dop DA > B > alfa

Levosi calcium sensitizer (by modulating TnC) and vasodilator (by activating K channels)

Milri PDE-3i. increase cAMP □ inotropy and vasodil

DOSE trial - frusemide

High dose (2.5 x home dose) > low dose in efficacy. High dose caused more renal impairment Continuous = intermittent in efficacy

HTN emergencies

Emergency	BP target	1 st line	Alternative	Try to avoid
malignant HTN	20-25% MAP reduction Several hours	Labetalol (relatively less reduction of cerebal perfusion and edema cf nitrates) Nicadipine	Nitroprusside	GTN – cerebral vasodilation
Encephalopathy	20-25% MAP reduction Immediately (U2D: 10-20% by 1h. don't exceed 25% by 24h)	Labetalol, nicardipine	Nitroprusside	GTN – cerebral vasodilation
Ischemic stroke	< 220/120. If higher, reduce MAP by 15% over 24h (faster for other In – MI, AD etc) For T/lysis: < 185/110 & keep < 180-105 If none of above, no need to reduce within 1st 5-7 days	<u>Labetalol</u>	Nicardipine, nitroprusside	GTN – cerebral vasodilation
ICH	Debatable < 180 immediately (target 130-180: no consensus) (AHA: IV Rx if SBP > 220)	Labetalol	Nicardipine, nitroprusside	GTN – cerebral vasodilation
ACS	< 140 immediately	GTN, labetalol GTN may cause tachy, control with labetalol	Urapidil	nitroprusside reduces perfusion through diseased coronaries & worsen damage.

Aortic dissection	< 140 immediately SBP < 120 and HR < 60 immediately	Nitroprusside (better pre and afterload reduction than GTN – will need GTN in a high dose) + frusemide Esomolol + GTN / nitroprusside / nicardipine (BB is the cornerstone: reduce both HR, BP) Esomolol has faster onset and offset of action than labetalol. So easy to titrate	GTN + frusemide Urapidil + frusemide Labetalol	Nitroprusside/GTN alone -> SNS □ high ventricular force & rate Hydralazine □ direct arterial dilator, increase aortic shear stress,
Eclampsia / pre eclampsia / HELLP	< 160/105 immediately	Labetalol, hydralazine		erratic BP reduction

Although high RAAM is the driving force, degree of RAAM activation shows a marked variability among individuals. RAAM blockers may cause too rapid to no reduction in BP. Therefore are not suitable for hypertensive emergencies

IV labetalol dosing: IV 2-4mg/min until target is achieved. Then 5-20 mg/h

Hypertensive encephalopathy

Loss of autoregulation – posterior brain is more vulnerable due of weaker SNS innervation □ PRES Cerebral edema, microhemorrhages, microinfarcts. Focal signs are unusual, if present think stroke.

MDMA

HTN : BDZ, phentolamine (alfa), nicardipine, GTN. Avoid BB – unopposed alfa □ worsen coronary

ischemia

Ischemia: GTN, aspirin, angio

Tachy: dilt, verap

Pheo: phentolamine (alfa), nitroprusside, nicardipine

With AR – avoid BB, DIltiazem etc \square low HR \square increase time for regurg \square worsens AR!

INTERACT-2: Rapid BP reduction (< 140 within 1h Vs < 180) in ICH did not improve 90d functional outcome or death. Vairety of antiHTN used – their individual influences not known

ATACH-2: 110-140 Vs 140-180 no difference (achieved SBPs: 129 Vs 141) in functional outcome or mortality. Insignificant reduction in hematoma expansion

Shock

Inadequate tissue perfusion due to absolute or relative reduction in cardiac output

Causes

With high JVP

cardiogenic, MI, myocarditis, valve accident, aortic dissection, tachycardia

obstructive PE, tamponade, Tension pneumothorax

with low JVP

with warm peripheries

distributive septic, anaphylactic, high output HF

with cold peripheries

hypovolaemic hemorrhagic (GI, hemothorax, girdle #, AAA), 3rd spacing (pacnreatitis,

rhabdo, diarrhea / vomiting)

mixed Addison, septic

mgt

ABCDE

Keep flat

Wide bore cannulae / IO cannulation

Blood for - FBC, CRP, SE, RBS, cortisol, cultures RFT, LFT, VBG (lactate), DT, amylase

Attach to monitor – HR, BP, SpO2, temperature

Rx

IV NS 200 mL over 5-10 min – safe even in cardiogenic shock. If responding give further fluids. For large volumes, prefer Hartman (hyperchloremic acidosis with NS)

Further mgt according to cause

Cardiogenic MI Rx, dobutamine, adr, norad, levosi, milrinone, IABP, LVAD. Specific Rx (PCI, DCC)

Septic Abtcs, fluids, source eradication

Hypovolemia fluids, blood (Hb 8)
Anaphylactic IM adrenaline 0.5 mg

PE T'lysis

Tension needle ☐ ICT
Tamponade pericardiocentesis

Addison HC

Problems with inotropes

Tachyarrhythmia Myocardial strain Digital ischemia with vasopressors Tachyphylaxis

Monitoring the critically ill

Circulation

Ventilation / oxygenation – ARDS, VAP Fluid balance / hydration Nutrition DVT, stress ulcer, sepsis

Anaphylactic shock

Diagnosing anaphylaxis

After exposure to a known allergen

Hypotension alone OR

2 from – resp / skin / GI / hypotension

With or without exposure / allergy history, acute onset Skin AND resp / hypotension

management

ABC

IM adrenaline 0.5 mg.

- can repeat the same dose every 5min. usually responds within 1-2 doses
- IV: 1: 10 000. Or more dilution. Rate 0.1-0.2 micg/kg/min. under ICU monitoing tachyarrhythmia, severe HTN, coronary ischemia (Counis Xd)
- SC: avoid. Erratic absorption
- Nebulized adrenaline can be considered for laryngeal edema
- How does adrenaline act? alfa vasoconstriction, B1 increase CO, B2 reduce bronchospasm, mast cell stabilization

Remove allergen

2nd line Rx : IV HC 200mg, IV chlopheniramine 10 mg stat, consider salbutamol nebs Oxygen, IV fluids 500 mL over 5-10 min

Keep supine, raise legs. DO NOT SIT UP SUDDENLY \square empty ventricle Xd : sudden death!

Refractory anaphylaxis

Rule out:

Adrenaline errors - injected too late, wrong dose, short needle, expired / light exposed vial
Patient suddenly stands or sits or is placed in the upright position after adrenaline injection
Patient taking a beta-adrenergic blocker which interferes with effect of adrenaline
Kounis Xd -
Error in diagnosis

Mgt of refractory anaphylaxis

Adrenaline IVI
Other vasopressors
Glucagon (bypasses B receptors – useful if on BBs), ipratropium (useful if on BB)

???? duration of steroids ????

Arrhythmia

Tachy

BP, GCS, LVF, chest pain

Yes $\hfill\Box$ cardioversion. DCC sync. Can consider a denosine for regular narrow

No □

Broad complex – IV, ECG, amiodarone infusion. Adenosine if SVT+BBB/aberrancy

Narrow complex – IV access, ECG< vagal, adenosine, BB/CCB – definitive

Adenosine 6mg bolus, NS flush – 12mg bolus and flush

Amiodarone 150 mg over 10 min and infusion 1mg/min over 6h (ACLS tachy algo), (for VT with pulse) procainamide, flecainide

amiodarone for AF – 300mg over 20-30min, 900 mg over 23h

VT MI, K, Mg, pH, ECG, TnI, TTE

Monomorphic VT

Pulseless cardiac arrest mgt

Unstable sync DCC

Stable BP IV amiodarone (alternatives – IV sotalol, flecainide, lignocaine)

Consider MgSO4 (8 mmol over 2-5min ☐ 60 mmol in 50 mL of 5%D over 24h)

Sync DCC if refractory Overdrive pacing

Polymorphic VT

Atrial fibrillation

HD unstable - DCC? with UFH bolus

HD stable acute rate control with BB / CCB / digoxin

Then plan long term plan – rate Vs rhythm

Rhythm - electrical or chemical

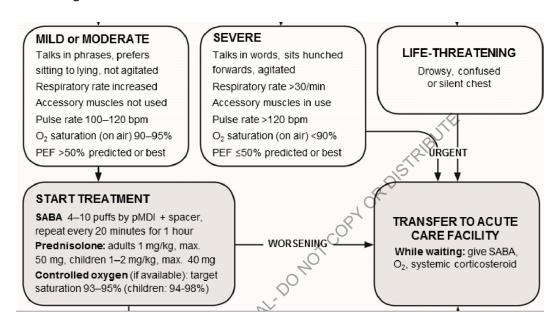
If AF < 48h – start AC, cardiovert, continue OAC at least 3 weeks

If > 48h – AC x 3 weeks – cardiovert, continue OAC

Or do TOE rule out clot and cardiovert

bradycardia

hypotension, LVF, chest pain, confusion
no – W & W
yes – atropine 0.6mg repeat 3-5min upto 5mg
transcutaneous pacing
epinephrine, dopamine, isoprenaline
TPM, PPM


Acute severe asthma

ASA phrases, HR > 100, RR > 25 PEFR 33-50%

LTA resp failure (cyanosis, silent chest, NL CO2, SpO2 < 92%), hypotension/arrhythmia,

confusion/agitation, pEFR < 33%

NFA high PaCO2

Assessment

Severity

DD HF, pneumothorax, PE, pneumonia

Ppt allergen, compliance, infection (URTI, LRTI)

Rx

Sit up

High flow oxygen

Nebulize salbutamol 5mg, O2 driven, 15-30 min / back to back □ 4 hourly

Nebulize ipratropium

IV HC 200 mg stat □ 100mg qds

IV MgSO4 1.2-2g single dose. Do not repeat − muscle / respiratory paralysis

Rule out pneumothorax, PE, HF, pneumonia

ICU

CPAP cautiously

Intubation with ketamine for dissociative anesthesia with BD properties. RSI Inhalational halothane etc are also helpful Maintain sedation and paralysis Allow prolonged exp, low TV (6-10 mL/kg), low pressure

Watchout for barotrauma and hypotension

Treat ppt cause – Abtcs Support – hydration 2-3 L/day Prevent DVT and stress ulcers

?? any anesthetic agent to avoid???? Permissive hypercapnia essential ?? LITFL

Taper Rx with clinical improvement

Neb salbutamol 4 □ 6 □ 8 hourly □ SOS
Neb ipra 6h □ off
IV HC \square PO pred 30-60 mg/d – total of 14d
Complete Abtcs

Discharge criteria

- 1. Home therapy for > 24h without need for rescue therapy
- 2. PEFR > 75% of best, diurnal variation < 25%
- 3. Technique checked and corrected, PEFR chart
- 4. High dose ICS started, LABA started
- 5. Ppt identified, written plan for acute care
- 6. Review arranged (2d with local care provider, 1-2 week at clinic)

COPD exacerbation

DD

Infective or non infective Pneumothorax – CXR, CT Chest Pneumonia Other – MI/LVF, PE

Classification for hospitalized pt

Parameter	Mild	Mod	Sev	
Respiratory rate	20 -30 bpm	>30 bpm	>30 bpm	

Use of accessory muscles	No	Yes	Yes
Mental status	No change	No change	Acute change
Improvement of hypoxemia with oxygen	improved with supplemental oxygen given via Venturi mask 28-35% inspired oxygen (FiO2)	improved with supplemental oxygen via Venturi mask 25-30% FiO2	hypoxemia not improved with supplemental oxygen via Venturi mask or requiring FiO2 > 40%

Oxygen

88-92% (60-70mmHg) – higher SpO2 remove hypoxic drive Controlled through venturi

BDs

SABA +/- SAMA

Each session not > 6min (tachyphylaxis of beta receptors)

2-4 hourly

Air driven (not oxygen dirven – inadvertently remove hypoxic drive)

Steroids

Oral pred 40mg/d 5-7d

Higher doses – no added benefit

Antibiotics

Increasing sputum purulence

Coamoxiclav 5-7 days

Pseudo cover if - PHx of pseudo infection, recent hospitalization, concomitant bronchiectasis

NIV

- 1. T2RF / pH < 7.35,
- 2. Severe hypoxia P:F < 300
- 3. Severe dyspnea with exhaustion RR > 25

Decide on ceiling

CIn – resp arrest, low GCS, unRx pneumothorax, hypotension, uncear air way, fascial deformity Preferred setting

ST mode

Back up rate 2-6 below pts rate

ePAP 4, iPAP 10-12. Increase iPAP 2cm every 5min until target TV is achieved (6-10 ml/kg)

reassess in 1h

persistent hypercapnia : increase iPAP / RR / insp time / decrease insp rise time persistent hypoxia : increase ePAP, increase FiO2. When ePAP is increased, increase iPAP too to maintain PS

timed weaning (D1 24h, D2 16h, D3 12h, D4 2h + 2h + 6h)

Other

Hydration DVT Px

Rx co mobidities

Discharge plan

Prevent exacerbations Consider LTOT, vaccines, rehab Inhaler technique

2ry pneumothorax

- \Box > 2cm or SOB ICT
- ☐ 1-2cm aspirate
- □ < 1cm − 24h O2

BL or tension pneumothorax – need ICT

MV

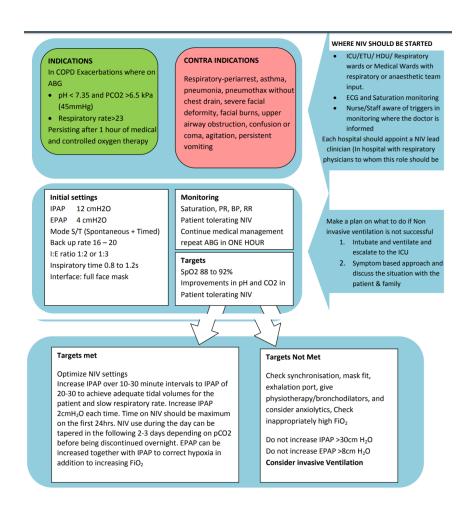
Arrest, ventricular arrhythmia, unconscious, HD unstable, NIV failure, respiratory pauses, gasping, agitation, requiring sedation, severe aspiration, secretions

NIV

Mask types – mild to severe disease Nasal

Orofacial

Fullface


helmet

Other

Successful NIV

Decrease CO2 by 8 pH increase by 0.6

SL guidelines on NIV

Pneumothorax

	PSP	SSP	
1. Discharge	< 2cm ,Asy	-	
2. 24h obs + O2	-	< 1cm, Asy	
3. Needle asp	> 2cm / SOB	1-2cm, Asy	
4. ICD	Failing 3	> 2cm OR SOB	
	Tension	Failing 3	
		Tension	

ICT

Safe triangle - 5th rib upper border, MAL, AAL Indications

- 1. Tension pneumothorax
- 2. BL pneumothoraces
- 3. Failure of needle aspiration
- 4. Traumatic pneumothorax

Post ICT SOB

Re expansion pulmonary edema

Tube block SC emphysema at neck MI Pain

Removing

Repeat CXR Observe

Prevent recurrent

Pleurodesis / pleurectomy / other procedures after 1st SSP (in PSP – after 2nd Pnthx)

Hemoptysis

Massive > 400 mL in 3h or > 600 mL in 24h

Causes of massive hemoptysis

Cancer

TB

Bronchiectasis

Mycetoma

Other causes of hemoptysis

PΕ

DAH

Pneumonia

Left heart disease

Assessment

Bleeding severity

Oxygenation

Hemodynamics – rarely compromised

Rx

- □ Oxygenation
 - Oxygen
 - o Intubation single lung intubation in to heathy lung or intubate withdouble lumen ETT
 - Prefer a broad tube that allows bronchoscopy
- ☐ Correct coagulopathy, consider Abtcs if infection suspected. Role of tranexaemic controversial. Few small-scale trials showed reduced hemoptysis volume and duration. Risks are aggravation of PE and facilitation of clotting within airway
- □ Early bronchoscopy

- Will show the bleeder or at least localize the site
- o Adrenaline injection, balloon occlusion of the airway
- \square Bronchial angiogram /- BAE
- □ Surgery

Ix for cause CXR, CT chest ANA, ANCA, anti GBM, UFR, RFT, LFT, coagulation Sputum – TB, bacterial culture, aspergillus studies TTE

Pneumonia

Fever cough SOB - DD

Respiratory infection

Bronchitis

Pneumonia – CAP – T/A, HAP

TB, atypical (PCP, aspergillous)

DPLD - COP, COPD, IPF exacerbation / AIP, subacute HP, E-LD

PΕ

Cardiac disease

CKD

Lobar patch – RV IE with emboli, PE, pneumonia

HAP – pneumonia developing after 48h of hospital stay, netither present nor incubating on admission VAP -

HCAP – within 3m, >2d hospital stays / / nursing home / home IV drugs / immunosuppressed / chronic HD within 30d

Mgt

ABC

PCM, hydration

Abtc

Chest PT / sputum clearance – no clear

DM control etc

Vaccination - influenza

HAP

Early – early detected, low risk – ceftriax + clarithromycin/levoflox

Late / early with high risk

Pseudo cover – piptaz / ceftazidime G - - amikacin / genta / cipro

+/- MRSA cover – vanco

Vanco, AG - post HD

CAP

CURB-65, BU > 7 mmol/L, RR > 30, BP 90/60, age > 65 \Box > 4-5: ICU

0-1 : influenza testing if suspected amox +/- clarithro clari, doxy

2: admit

IV Coam (SL - IV. Others oral) + clari doxy

3-5 IV ceftriax / IV coam + clari

Steroids

Pneumonia

CRB-65 if zero go home

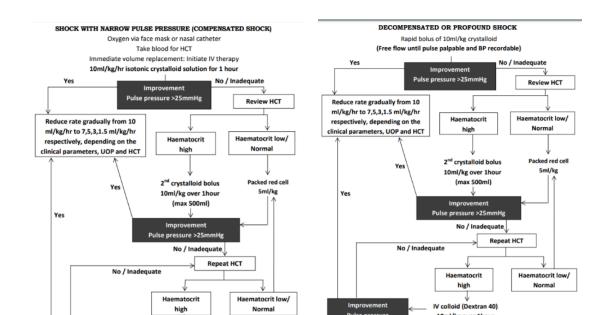
CBS, FBC, CRP, Na, Cr, LFT, ECG, CXR, blood culture, sputum culture Coamoxiclav / ceftriax, clarithromycin

Poorly responding pneumonia
Drug failure
Disease complication – abscess, collapse, empyema, HF, ARDS
Cancer / underlying lung disease
Alternative Dx - COP

Tamiflu??

Sepsis

Acute fever


Infection

Poison

Thyrotoxic crisis

Dengue

	Febrile (plt < 130)	Critical	Preshock	Compensated shock	Decomp & Profound shock	Convalescent
Fx		Pl effusion Ascites HCT rise by 20% Heralded by defervesc. , Rapid plt fall	Sweating Abd pain Persistent vomiting Restlessness Postural dizziness UOP < 0.5 Cold periph CRFT>2s High DBP postural SBP drop > 20 High HR/RR	PP <u>≤</u> 20	Decomp: SBP < 90 or 20% reduction or MAP < 60 Profound: Unrecordable BP	Fx of overload periorbital oedema, cough, wheeze tachypnoea, high SBP, DBP and wide PP. crepts and rhonchi.
Monitoring	•		,			
Vitals	3h	1h		15min		
IPOP	6h	3h. in high risk, consider catheter		Hourly. Conside	er catheter	
НСТ	6h	3h		Before and 15n boluses. 2-3h t		
FBC	bd	Bd		Bd or more		
Mgt	2.5 L/d or less PO +/- IV. Extra for D/V	Fluid quota	Increase infusion rate	Oxygen Bolus (1h) Crystalloid x2 Colloid blood	Oxygen Bolus (15min)	

Blood transfusions in DF

Blood – when bleeding is evident / suspected

- 1. Overt bleeding > 6-8 mL/kg
- 2. Refractory shock despite 40-60 mL/kg of fluid
- 3. Acidosis / organ dysfunction
- 4. Relatively low HCT, dropping HCT

5mL/kg bolus. Should raise PCV by 5 points

On going bleeding assessment

? DIC ? liver failure Consider – plt, FFP, TA, PPI

Prevention or treatment of bleeding

Plt, plasma, fVIIa, IVIG, antiD Ab, IL-11 tried in RCTs None showed benefit (Nipuns review) – all studies have excluded severe bleeding. ??? f VIIa may show benefit

Fx of fluid overload

Cough DD – pneumonia, myocarditis

Tachycardia

Tachypnea
Orthopnea
Increased BP

Mgt – frusemide small bolus out of CP. Infusion with colloid infusion in latter half ???

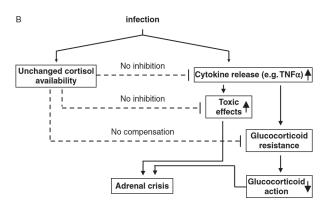
Place of frusemide

Not in leakage phase

May be at the end of CP, with colloid infusion in an overloaded pt vulnerable to hypotension Or with blood in bleeding and overload

shock with overlaod [
	high HCT □ colloid bolus	+ frusemide 10-20 mi	d way, repeat SOS

low HCT □ blood + ???? frusemide


overload + with no shock □

NL / low HCT □ restrict fluid, monitor — should improve within hours consider concealed bleeding pul edema □ fursemide 10-20

high HCT □ monitor

Addisonian crisis

Adrenal crisis

Table 1 Definition and grading of adrenal crisis (modified from (30)).

Definition:
(A): Major impairment of general health with at least two of
the following signs/symptoms
Hypotension (systolic blood pressure < 100 mmHg)
Nausea or vomiting
Severe fatigue
Fever
Somnolence
Hyponatraemia (≤132 mmol/l) or hyperkalaemia
Hypoglycaemia
(B): Parenteral glucocorticoid (hydrocortisone) administration
followed by clinical improvement
Grading:
Grade 1: outpatient care only
Grade 2: hospital care (general ward)
Grade 3: admission to intensive care unit
Grade 4: death from adrenal crisis (with or without parenteral
glucocorticoid administration)

Treatment of crisis

Draw bood for cortisol

IV HC 100mg stat □ 100-200mg/d □ gradual taper

IV fluids / dextrose if hypoglycemic (50%D 20-50 mL)

Start FC when HC dose in < 50mg/d (higher HC doses have FC effect)

Find the cause - TB (other infection - fungal), Al adrenalitis, mets, hemorrhage, steroid withdrawal

Thyrotoxic crisis

Myxedema coma

DKA HHS

	DKA	HHS
Incidence	Commoner	Rarer

R/F	T1DM	T2DM
Path	Severe insulin defi and very high counter reg	Less severe insulin defi and less
	Hmns	elevated counter reg Hmnss
	High hepatic gluconeogenesis	High hepatic gluconeo and peripheral
	And KB synthesis	uptake
	Osmotic diuresis (Gc, KB)	But enough insulin to inhibit HSL (&
		therofore ketogenesis)
Mortality	Less. 2-5%	Higher. 15%
Ppt	Infection – UTI, RTI	Same as DKA
	MI, CVA, PE, pancreatitis	Same drugs (also included dilantin)
	Trauma	
	Steroids, HCT, pentamidine, SNS agonists,	
	alcohol	
	Non compliance / eating disroders	
Presentation	Acute Polyuria, polydipsia, weight loss	Polyuria, polydyspsia
	Vomiting, abdominal pain (related to	Altered conscious levels, FNS (without
	acidosis and alcohol / cocaine, but not to	a stroke), fits
	Glc level)	No abdominal pain / Kussmaul
	Kussmaul breathing, acetone smell	breathing
Typical	Water (ml/kg) 50-70?	Water 100-220
deficits on	Sodium (mmol/kg) 7-10 Chloride (mmol/kg)	
presentation	3-5 Potassium (mmol/kg)) 3-5	
Dx	Hyperglycemia> 11 (198)	Hyperglycemia > 30 mmol/L
	Hyperketoneamia (BHB > 3mmol/L)	Hyperosmolarity > 320 mOsm/L
	Metabolic acidosis (VENOUS pH < 7.3 or	Dehydration
	HCO3 < 18)	No ketonemia (< 3 mmol/L)
	Severe = pH < 7.1	No acidosis (HCO3 > 15, pH > 7.3)
Complications	К, Р	Cerebral edema
	Cerebral edema in children	ODS
	Hypoglycemia	K, P
	DVT	DVT, pressure sores

Management

	DKA	HHS
Fluid	- deficit 50-70 mL/kg	Deficit : 100-220 mL/kg
	- Fill up to euvolemia	NS
	- Then maintain 150-250mL/h so that 50% of the	Intial Na rise is expected (Glc dilution ☐ fall in
	body water deficit is replenished within 12-24h	osm ☐ fluid shift to cells)
	- in addition, replace ongoing urinary losses	N/2 only if osm fails to falld despite good
	- Start with NS: 1L over 1h,2h,2h,4h,4h,6h	positive balance.
	- i f hyperNa, use N/2	1L 1 st hr \square 0.5-1 L 2 nd hr \square adjust
	- when RBS < 250mg/dL (300 in HHS) use, N/2 +	Target osm reduction 3-8 msom/kg/h
	5%D , add 10%D 125mL/h and continue NS to	Target Na reduction < 10 / day
	replenish volume	
Insulin	0.15 U/kg IV bolus (not recommended in JBDS	Start insulin when Glc cease to fall with fluids
	2010)	(start early if coexisting KB+)
	0.1 U/kg/hr	Target Glc reduction 90mg/dl/h

	Continue basal long acting insulin dose for those who were on it (facilitates maintenance and return to premorbid doses) Target RBS reduction 3mmol/L/h; KB reduction 0.5mmol/L/h; HCO3 3mmol/L/h; osm reduction < 3 mosm/h When RBS < 300 add 10%D 125mL/h	0.05U/kg/h (higher rates ☐ faster fluid shift out of vessles ☐ hypovol, cerebral edema) When RBS < 300 add 10%D 125mL/h Maintain RBS 150-200 by adjusting insulin rate until osm is corrected and mental status returned
К	Maintain RBS 150-200 Total body k always low. Serum can be high due to r 2/3 as KCl, 1/3 as K3PO4 Target serum K 4-5 If starting K is < 3.3 – give IV 40 mEq/h and delay in:	·
NaHCO3	Worsen hypoK Intracellular acidosis (CO2 accumulation) CNS acidosis Only if pH < 7.0	Not indicated
Definition of resolution	Venous pH > 7.3, HCO3 > 18 Plasma KB < 0.3 AG < 12 RBS < 200	Improved mental status Osm < 320 RBS < 300
SC regular insulin	After resolution 0.6U/kg/d or previous dose 2/3in the morning, 1/3 in the evening Basal bolus (night dose = basal + bolus = 1/3 of tota	l daily dose)

Comparison of guidelines

	DI	KA	Н	HS
	ADA 2009	JBDS 2013	ADA 2009	JBDS 2015
Definition	Glc > 250	Glc > 200	Glc > 600	Glc > 600
	pH < 7.3	pH < 7.3	Osm > 320	Osm > 320
	HCO3 < 15 (?18)	HCO3 < 15	pH > 7.3, HCO3 > 15	hypovol
				pH > 7.3, HCO3 > 15
IVF type	NS	NS	NS	NS
	N/2 if Na is NL or		N/2 if Na is NL or	N/2 only if osm fails
	high		high	to fall despite good
				+ve balance
	N/2+5%D when CBS	Cont NS. Ad 10%D	N/2+5%D when CBS	
	< 250	125mL/h when CBS	< 300	
		< 250		
Insulin	Loading bolus 0.15	No loading	Loading 0.1 U/kg	No loading
	U/kg	0.1U/kg/h		0.05 U/kg/h

Estimating total daily dose of insulin (JBDS)

0.5 – 0.75 x BW (kg). Use 0.75 if insulin resistance is suspected (teens, obese)

Basal bolus regimen: 50% of TDD as basal insulin in the evening. Rest divided equally across meals

Change in LoC is not a feature of DKA. Search for an alternative cause

- meningoencephalitis
- stroke / CVST

- cerebral edema
- hypophosphatemia (rhabdo, HF, enceph, H'lysis), ODS, WE

Alcohol intoxication

Pituitary apoplexy

Hyponatraemia

Outline

Assessment – symptoms severity, volume status, acute Vs chronic, cause Treatment

Targets

Urgently increase by 5 1st 24h do not exceed 10 Subsequent each 24h – 8 Maximum correction up to 130

3%S 2mL/kg in 20 min, check Na, repeat twice, not meeting goals \square infusion 1 mL/kg/hr till Sy improvement / total rise 10 mmoL / Na 130 – whichever comes earlier

Evaluation

Symptoms

- 1. Infants (high brain: intracranial space ratio)
- 2. Premenopausal women (inhibitory effect of Egn and high ADH level)
- 3. Chronic hypoxic patients (strongest risk factor) are at increased risk for hyponatremia encephalopathy

Severe	Vomiting	
	Fits	
	coma	
	Cardiorespiratory distress	
	Deep somnolescecne	
Moderately severe	Nausea without vomiting	
	Headache	
	Confusion	
Chronic subtle	Concentration deficits	
	Gait disturbance	
	Falls, Osteoporosis, fractures	

Volume status

Cause

Pseudohyponatremia – high lipids / paraproteins / LpX (PBC)
Hypertonic – mannitol, glycine, hyperglycemia
Isotonic – pseudohypoNa, sometimes mannitol / glycine / glucose
Hypotonic

Hypovolaemic – CSW, Addison, dehydration (diarrhea, vomiting), diuretics, 3rd spacing Euvolaemic – SIADH, hypothyroidism, hypocortisolism, 1ry polydipsia Hypervolaemic – CCF, CKD, CLCD, Nephrotic

Investigations

Serum and urine Na and osm SE, Cr, BU, FBC, LFT, RBS, cortisol, TSH, 2DE SIADH: CXR, CRP/ESR, infection screen, NCCT,

Mgt

Severe symptoms

- IV 3% saline 150 mL (2 mL/kg) over 20 min. check Na. repeat up to a total of 3 boluses until Na is increased by 5 mmol/L (rapid correction to prevent cerebral edema)
- **If symptoms improve** with this much of Na rise, subsequent treatment should be guided by the cause. Check Na at 6h, 12h, 24h and daily thereafter
 - Total increase in Na should not exceed
 - 10 mmol/L in the first 24h
 - 8 mmol/L in the subsequent 24h intervals
 - Final Na level should not exceed 130 mmol/L
- If symptoms do not improve with 5 mmol/L rise of Na,
 - Continue 3% saline to increase Na by 1 mmol/L every hour (1mL/kg fo 3%S will increase Na by 1 mmol/L if body water is 50% of body weight - KC)
 - Continue this only until
 - Symptoms improve
 - Total Na rise is 10 mmol/L
 - Na reaches 130 mmol/L (whichever comes first)
- Correction of hypoK / hypoMg will also increase serum Na

With moderate symptoms

Investigate for the cause

Give 1 bolus of 3% saline 150 mL (2mL/kg) over 20 min

Monitor Na at 1h, 6h, 12h and daily

Treat according to the cause, aiming to increase Na by 5 mmol/L within 1st 24h, but not by more than 10 mmol/L.

In subsequent 24h intervals, increase Na by 5-8 mmol/L is desirable

Benefit of bolus over continuous infusion to calculated Na correction rate

- 1. Avoids calculation errors
- 2. Simplifies regimen
- 3. Avoid overcorrection
- 4. Allows rapid partial correction that is needed to prevent or reverse cerebral edema

ODS

RF

Alcohol

Liver disease

Thiazides

Antidepressants

Duration and severity (Na < 120, greatest risk < 105) of hypoNa

Hypokalemia

CFx

hypoNa enceph ☐ improve ☐ deteriorate (coma, spastic quadriparesis, pseudobulbar palsy, EPS)

Px

Cautious monitoring and not exceeding the limits

If at high risk, consider desmopressin to stop water diuresis

Proactive strategy – giving dDAVP in pts likely to develop overcorrection

Reactive strategy – giving dDAVP when Na correction trajectory is ominous!

Rescue strategy – giving dDAVP when overcorrection has occurred, along with 5% dextrose

Rx

Discontinue active treatment

Consider;

5% dextrose 10mL/kg over 1h under strict monitoring of Na and UOP

IV desmopressin2micg 8hrly or less frequently

ODS is reversible!

Pitfalls in Rx

- 1. When hypoNa and hypoK and hypovolemia co exist,
 - a. Correct hypoK first it is more life threatening. Its correction itself increases Na a little
 - b. Correct hypovolemia with isotonic saline (0.9%) volume correction also reduces ADH and increases Na level. Giving hypertonic fluid will cause a rapid Na rise ppt ODS
- 2. Singaporean lecturer said : volume restriction will increase Na by only about 1-2 mmol/L. it seems he likes to use vaptans more liberally

How much of Na correction is offered by K correction?

Hypercalcemia

Ca, P, ALP, Mg Cr, Na acute: - saline pamidronate calcitonin HD. Glcc for MM, lymphoma, granuloma, vit D toxicity

Mild < 12 hydration alone

Severe > 15 hydration, Pami, Calcitonin +/- HD, Glcc

IM 12-15 apporpriate combination

Hydration:

3-6 L/day or 200-300 mL/h Target UOP 100-150 mL/h

Method	OoA	Duration	Problems
Hydration	Hours	Until infused	Overload, Ca calculi
Diuresis	Hours	Until given	IV fluid depletion, hypoK, hypoMg
Calcitonin IV/IM/SC	Hours	1-2d (tachyphylaxis)	Short lasting effect
HD	Hours	1-2d	Low P (needs replacement, if not increase Ca)
Bisphosphonate	1-2d	3 weeks	Low P, Mg, Ca, Jaw necrosis
Steroids	1-2d	Days – weeks	Glc, BP, limited settings

Chronic

Hydration

Suppress PTH

Calcimimetic – cinacalcet (PO), etelcalcitide (IV)

Paricalcitol (DHEC – more PTH gland selective)

Surgery – young, severe hyperCa, stones, bone disease. Pre op Vit D to prevent HBS

Bisphos for OP

Confused elderly

Infection – UTI, pneumonia, cellulitis, AGE, meningoencephalitis

Metabolic - CBS, Na, Ca, Mg, Cr, LFT

CNS - SDH, mets, ODS

МΙ

Endocrine - thyroid

Poisoning

Variceal bleeding

Resuscitation

2 widebore cannulae, blood for Hb, INR, Cr, Na, G & DT

IV NS 1L in 20-30 min

Blood (7-9), FFP (INR 1.5?), plt (50)

Urine catheter – IP/OP

Terlipressin / octreotide

Terlipressin 2mg stat and 1-2mg 4-6 hourly OR

Octreotide 50mcg stat and 25-50 mcg/hour

IV omeprazole 80mg stat and 8 mg/hour – sp for PUD, may reduce post EBL bleeding and clot stabilization

```
Ceftriaxone
Lactulose, rifaximin
UGIE

Banding
Sclerotherapy
Adrenaline for ulcer
Sengstaken Blakemore
BRTO – balloon occluded retrograde transvenous obliteration
TIPS
Post banding
NBM
Abtc
Terlipressin 72h
Hep encephalopathy
Repeat endo in 2 weeks
```

Scores

BB on discharge - Cln.

Rockall – for mortality and rebleeding risk prediction.

With or without UGIE. Variceal / PUD

Clinical phase – age, shock, comorbidity

UGIE compoenets - MWT / CA / no CA paths and Fx of recent bleeding

Glasgow Blatchford – to determine admission for treatment Vs outpt Mgt

Based on Hb, BU, SBP, other (HR, melena, syncope, heart failure, liver disease).

Does not need UGIE. Had both varicea; pr ppk;

Low risk patients (BU<6.5, Hb>13, SBP>110, HR<100, no above adverse Fx – ie score 0) can be managed as **out patient.**

AIMS-65

(albumin < 3, INR > 1.5, Mental status, SBP < 90 , age > 65) Less accurate than RS and GBS

PPI – bolus = IVI

Acute liver failure

Hep encephalopathy classification

West heaven	ISHEN	CFx	Rx
Minimal	covert	psychometric	no
1	covert	sleep reversal	no
II	overt	flaps, disorient in time	yes
III	overt	confusion	yes

IV overt coma yes

DD
SDH / EDH / ICH
Wernicke's
Alcohol intoxication / withdrawal
ODS
Hypoglycemia , hypoNa
Post ictal / NCSE
Wilsons neurological disease
Primary psychiatric disorder

Mgt

- 1. Initial care of drowsy pt
- 2. Detect and treat reversible causes
- 3. Identify and correct ppt factors infection, UGIB, constipation, sedative, hypoK
- 4. Empiric therapy for HE
 - i) Lactulose, 2-3 soft /d
 - ii) Metro 200mg 6h or rifaximin 550mg bd (equal efficacy for acute HE in an open label RCT with 120 pts 2018, Arab J of GE). Long term metro not given due to neurotoxicity
 - iii) LOLA (IV AASLD 2014. Cochrane : IV = PO) improve mortality
 - iv) BCAA supplements faster recovery. No mortality benefit
 - v) Albumin no mortality benefit short term. Improves long term outcomes

Protein < 40g/d ppts malnutrition, increase prot catabolism □ worsen HE

Vege proteins (high BCAA. Low AAA) are better tolerated than animal proteins (high AAA)

Prot restriction not encouraged, certainly not for > 48h, and if at all, is mainly for animal protein. Give 1.2-1.5 g/kg/d

Probiotics − improves QoL and outcomes of hep enc but not mortality − cochrane

2ry Prevention

Lactulose

Rifaximin after 2nd HE event

LT

New criteria for HRS by International Ascites Club (2015)

- Cirrhosis + ascites
- AKI (Cr 50% rise in 7d or 26 rise in 48h)
- · No
 - shock
 - hypovolemia (nodireutics& on albumin x 2d)
 - structural kidney disease (P'uria < 500, RC < 50, normalUSS)
 - Nephrotoxic drugs

Mgt of AKI in cirrhosis

Dx sepsis, drugs, HRS, GN, hypovol

RRT only if LT is planned

Avoid nephrotoxins

Fluid restore BP. Give IV albumin for volume repletion – needed for 2 days before Dx HRS

Treat

Albumin 1g/kg/d + vasopressor (Cochrane 10 RCT review – all are equal – low quality EBM)

(after 2d, albumin 20-40g/d up to 14d)

Vasopressor: terli 0.5-1 mg 4-6h, double every 2 days, max 12mg/d

Or norad or octreo+midodrine

Acute / subacute diarrhea in ulcerative colitis

Relapse Infection – PMC Drug induced – Abtc associated Cancer

Status epilepsy

- ABC, CBS, BDZ, AED, anesthesia. > 5min: impending status epilepsy

- 1. ABC, IV access CBS, RFT, LFT, FBC, Ca, Mg, Na
- 2. CBS, thiamine
- BDZ diazepam IV 10mg/2min, lorazepam 4mg IV, Midazolam 10mg IM / IN / buccal Veterans Affairs Comparative Trial: lorazepam > diazepam, phenytoin, pheny+Diazepam in terminating overt GCSE and preventing recurrence. Probably due to prolonged duration of action (10-12h) as it is not redistributed to adipose tissue like siazepam
- 4. Repeat BDZ
- 5. IV AED phenytoin 20mg/kg at 50mg/min with ECG monitor
- 6. Consider repeating IV AED (IV levet, NaV)
- 7. Anesthesia TPS / propofol / midazolam IV with ventilation and continuous EEG monitoring. If midazolam infusion doesn't control within 45-60min, switch to TPS / propofol
- IVI until EEG is seizure free for 12h. then tail off
- Identify precipitating event / predisposing factors / toxin, infection etc
- Look for complications rhabdo, drug toxicities, aspiration, bed sores

Diazepam	Lorazepam	Midazolam
IV, PR	IV	IM, IN, buccal
10 mg	4 mg	> 40 kg : 10mg
(0.1-0.2 mg/kg)	(0.1 mg/kg)	< 40 kg : 5 mg
		Can repeat boluses every 5 min util seizures
		control, upto 2mg/kg

			Then give the infusion 0.1 mg/kg/h
OoA	20s	2-3 min	1 min
DoA	20 min	10-12h	3
Lipid solubility	High	Low	?
	Thrombophlebitis,		
	resp depression		

	Phenytoin	Fosphenytoin		
	Active drug	Prodrug		
Purple glove	More – ppt due to poor water solublity	Less (due to water solubility, so no ppt during injection)		
Hypotension, arrhythmia	More Due to solvent propylene glycol	Less – no propylene glycol		
Dose and rate	20 mg/kg 50 mg/min	20 mg/kg 100-150 mg/min		
Route	IV	IV Although can be given IM, not recommended in SE due to erratic absorption		

Ppt events

Electrolytes – Na, Glc, Ca, Mg HTN, uremia Toxins - TCAD CNS infection AIE – NMDARE CVT, abscess, tumor

NCSE

Less aggressive management may be enough because complications are less

AFP

- 1. GBS
- 2. Snake bite
- 3. Botulism
- 4. MG
- 5. Stroke

Unconscious patient

Non surgical acute abdomen

DKA
Krait bite
AIP
Inferior MI
Acute pancreatitis

Acute confusion

Endocrine / metabolic

Glc – hypoGlc, DKA, HONK Myxedema Thyrotoxic crisis Hypercalcemia Hyponatremia, hypernatremia

stroke

acute focal neurological deficit - DD

- 1. stroke / TIA
- 2. hypo/hyperglycemia
- 3. demyelination
- 4. tumor bleed
- 5. seizure / Todds
- 6. focal encephalitis

Resuscitations

ABC

CBS

Swallowing – sit, speech, slurring sip of water. If failing at any point, pass NG

NCCT

NIHSS, timing – eligibility for intervention

T'lysis

In

< 3h, infarct should sensory strokes be T'lsed?

3-4.5h, infarct, NIHSS < 25, stroke size < 1/3 of MCA territory, age < 80y, no PHx of DM+stroke

Exclude CIn

Target time – within 60min from admission

rtPA 0.9 mg/kg, IV infusion 10% of the dose as a bolus in 1 min, rest over 1h

BP < 185/110 at start, keep < 180/105 during infusion. IV labetalol SOS

No antithrombotics for 24h

Thrombectomy

In SL:

< 6h, NIHSS > 6, ASPECT > 6, clot in ICA / MCA1 MRI perfusion scan??

Medical mgt

Aspirin

DAPT for minor stroke for 3 weeks

High intensity statin - SPARCL

Preserve penumbra

BP control, CBS, Na, infection/temperature, O2

Supportive care – PT, ST, OT, prevent pressure sores and DVT,

Screen for DM, DL, FBC (PRV), AF, cardiac, carotid - correct

Specific situations

Improving weakness

Minor stroke – if functionally disabling – give. (eg: visual filed defect). For non-disabling stroke can consider (up to 4.5h)

Extensive clear hypoattenuation – don't give. Established infarct. Minimal benefit. High bleeding risk frank hypodensity – established stroke. Don't give. Bleeding risk high

Suspected functional – give. No risk of bleeding

Pregnancy

Coagulopathy – plt < 100, INR > 1.7, aPTT > 40, PT > 15s avoid

DOACs -□ cant give unless not taken within 48h or after confirming fXa activity is normal and clotting profile is normal. can we reverse and give?? – not commented in AHA 2018. Probably not advisable to reverse

```
Warfarin - INR < 1.7 give
```

DAPT - give

Therapeutic LMWH within 24h - don't give

DVT Px – IPC stoking reduce DVT and improve mortality at 6m (CLOTS trial)

PPI Px

Physiotherapy

Malignant MCA

Restarting OACs after ischemic stroke

TIA - 1d

Minor NIHSS < 8 - 3d Mod NIHSS 8-15 - 6d

Severe NIHSS > 1512d, after re imaging

Early CT Fx of stroke

- 1. Dense MCA, dot, double dot
- 2. Sulci effacement
- 3. Loss of gre white demarcation
- 4. Loss of insular ribbon

Deterioration of LoC post stroke

- 1. CBS
- 2. Na
- 3. ICH
- 4. Cerebral edema mannitol 1g/kg, decompressive craniotomy
- 5. Obstructive hypodrcephalus
- 6. Reinfarct
- 7. HTN encephalopathy
- 8. Sepsis
- 9. Uremic

Mgt of rtPA induced angioedema (plasmin increase bradykinin and histamine genesis)

- 1. Stop rtPA and ACEI
- 2. Consider ETT
- 3. IV methyl prednisolone 125mg + IV ranitidine 50mg + IV diphenhydramine 50mg (H1RB)
- 4. Consider adrenaline 0.3 mL of 1:1000 as SC or 0.5 mL nebulized
- 5. Consider icatibant 30mg SC stat and repeatable 6 hourly upto 3 doses (Bradyk RB)

Malignant MCA

Stroke unit

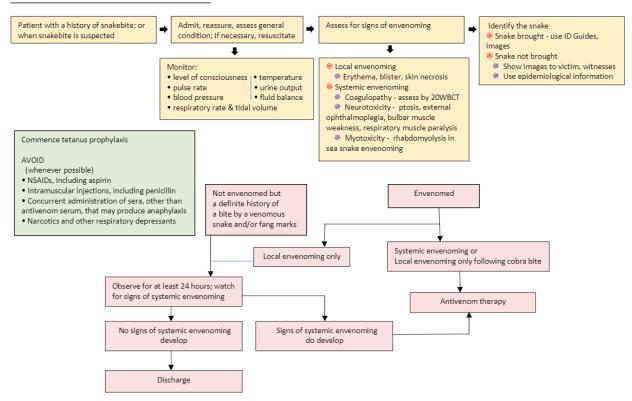
Bacterial meningitis

CSF when to do CSF

Blood culture

DXM

Abtc – Ceftriax +/- vancomycin


Consider - ampicillin, meropenem, vanco

Dropping GCS Edema, hydrocephalus Abscess Subdural empyema

Snake bite

2017 SLMA guidelines

MANAGEMENT ALGORITHM

- 1. ABC
- 2. Wash the bite site
- 3. Fx of local and systemic envenomation WBCT
- 4. TT (IM. on discharge avoids risk of bleeding?)
- 5. Identify the snake
- 6. Monitor for 24h. 48h with cobra and HNV

WBCT – 2 ML of blood in to clean dry glass tube. Free to stand. Check in 20 min Indications

Commence antivenom therapy immediately for the bites of the following snakes if the indications listed are present:

Russell's viper:

- > If coagulopathy is present: positive 20WBCT; incoagulable blood, spontaneous bleeding.
- ➤ If no demonstrable coagulopathy, negative 20WBCT BUT proven Russell's viper bite with fang marks, abdominal pain and some local effects such as swelling, or in the presence of any one or more systemic effects such as visual disturbances, dizziness, faintness, collapse, shock, hypotension, cardiac arrhythmias and myocardial damage (reduced ejection fraction) (WHO Guidelines p. 96)

Cobra:

- Any evidence of systemic envenoming or local envenoming.
- "Dry bites" are common; in the presence of fang marks without symptoms of envenoming observe for 48 hours. If any swelling appears give the first dose (10 vials) of AV.

Kraits:

- If neurotoxic effects (ptosis, ophthalmoplegia) are present, for bites by either species of krait OR
- > If severe abdominal pain in the absence of neurotoxicity.

Saw-scaled viper:

> Only if coagulopathy is present.

LR - swelling

10 vials, e	each dissolved	to 10 mL of	diluting solu	tion water	□ 100 mL -	- dissolve in to	400 mL of
NS 🗆 ove	r 1h						

Max dose 40 vials

Prevention of anaphylaxis – SC adrenaline 0.25 mg (0.25 mL of 1 : 1000 adrenaline) – Avoid in past stroke / TIA / ICH. Watchout for hypertensive crisis

Premed with HC / H1RB / H2RB and infusion rate (over 10min vs 120 min) doesn't change the risk of reactions

SL trial on prevention of AVS reactions - 2011

- 1007 pts
- RCT
- All possible combinations of adrenaline 0.25mg SC, HC 200mg IV, promethazine 25 mg IV
- Benefit only with adrenaline. HC negated this benefit. Higher deaths among those receiving HC.
- ASCVD, uncontrolled HTN were excluded due to risks with adrenaline

AVS reactions

Anaphylaxis – within 180min of starting. Skin, GI, lung, hypotension.

Stop. IM adrenaline (what if in coagulopathy?) \square rpt \square consider IV. Along with salbutamol. HC and piriton are no longer recommended (research papers 2011, 2013). WHO 2016 guidelines recommend their use

After reaction settles, restart AVS cautiously if indication is strong. Risk of anaphylaxis reduces with repeat dosing.

Febrile reactions - within 2h. IVF, PCM, cooling

SSS – 1-12d. skin rash, LN, MnM, arthralgia, myalgia, proteinuria Rx – piriton 2mg 6 hourly 5d – if no response at 2d, give prednisolone 5mg 6 hourly 5d

polongaTab – open labelled RCT reported in 2001, 1g Vs Haffkiene 10g, inferior in efficacy, superior in safety. Need further studies with higher doses

cobra – day time near human dwellings, upper limb. Coagulopathy in short lived, often without major bleeding, resolves spontaneously

SSW – finger and toe tips. LR+, caog+. AKI rare. Neuro – no

Green pit viper – LR ++, coagulopathy (Rx – FFP 10 mL/kg/d x 2d)

RV – dusk and night. Daytime in paddyfields

Intial AV dose : 20 vials, (each in to 10 mL of dilution water \square 200 ML) dissolve in 300 mL of NS \square 500 mL solution give over 1h. recent research suggest this is adequate to neutralize the total venom dose and further dosing will not offer any added benefit. However, 2017 SL guidelines still suggest to repeat at 10 vial doses every 6h.

FFP was beneficial in Australian study but not in SL study

HNV – daytime, below ankle / fingers
Observe for 48h
LR+ - puncture the blister and give prophylactic Abtcs – fastens recovery
Coagulopathy – do 6h WBCT for 48h. if abn, give FFP

Krait

AVS 10 vials enough
Will not reverse paralysis
Ventilate when TV < 250 mL
Recovery only when new nerve fibres sprout

Ceylon krait bites are rare. Don't know if Haffkeine (Indian) works. Guideline recommends to give, assuming it would cross neutralize

Paracetamol overdose

RF for severe injury – malnutrition, P450 +, fasting, staggered overdose, chronic alcoholics (P450+)

```
Ix – LFT, RFT, INR
```

Rx

AC < 1h

Indications for NAC

Dose > 150mg/kg or unknown or toxic PCM level (staggered: > 7.5g a day or > 4g/d if high risk) Hepatitis

No benefit after 72h of acute ingestion

Dosing

Duration – until PCM level is undetectable and AST ALT normalize

LT

Methionine

Comparable efficacy, cheaper. Oral

NAC reactions

Non IgE mediated Urticaria, wheezing – give adrenaline – can restart after recovery Hypotension – give adrenaline. Cant restart

GL

NG
Left lateral
NS 250 mL in room temperature
Funnel or syringe
In and out
Until effluent is clear

AC

50-100g

Salicylate

TCAD

Rx – ABC, GL, O2, fluids NaHCO3 (8.4%) 50-150 mL bolus \square infusion. Target pH 7.50-7.55 QRS > 100, hypotension, SVT or VT AVOID amiodarone

Theophylline

Kaneru / digoxin

Rx

MDAC

Correct hypoK and Mg SVT – phenytoin, VT – lidocaine. 50-100J DC only if essential AVOID – CCB, amiodarone, Cal gluc (even for hyperK), cardioversion digiFab

Organophosphate

BB/CCB

Respiratory failure

T1RF PaO2 < 60mmHg with FiO2 50% or PaO2 < 40 mmHg with any FiO2

Pulmonary edema

Pneumonia

Asthma

PΕ

Pneumothorax

ARDS

Lung collapse – FB / mucus plug / tumor

Trauma / contusion

T2RF PaCO2 > 50 mmHg or > 45 mmHg with pH < 7.30

COPD

Neuromuscular

GBS

Krait bite

MG

Poisoning – opioid, BDZ, organophosphate

Prolong T1RF

Correct hypoxia

Give oxygen Nasal prong 2L/min, 30% Face mask 6-8 L/min, 60% Non rebreathing mask with reservoir bag 15 L/min 70% Bag valve mask respirator with reservoir bag 15L/min 100% NIV (ePAP)
Invasive ventilation (increase FiO2, increase TV ..)

Correct hypercapnia

NIV (iPAP)
Mechanical ventilation (increase RR)
Indications – FVC < 15 mL/kg

Mgt of ARDS

- Sedate, paralyse, ventilate decrease O2 requirement
- Conservative fluid resusc CVP ~ 4, Hb 7 (negative balance, diuretics, hyperoncotic albumin solutions)
- Lung protective ventilation TV 6mL/kg, insp plateau pressure < 30 mcH2O, adjusted PEEP (~ 15 mmHg), prone position (12h/d for severe)
- Steroids for mod-sev ARDS early in the course

High flow oxygen through nasal canula improves 90d mortality in acute hypoxic resp failure - FLORALI

AKI

SEPTIC ARTHRITIS

Arthroscopic washout

Analgesics
Temporary immobilization
Synovial fluid – FR, gram stain, culture, crystals in polarized microscopy
Purulent
W > 25 000, (often 100 000), N > 90%, high CRP
Protein high, glucose low
USS – fluid, aspiration, synovitis
Antibiotics
Flucloxacillin
MRSA – vanco
Gonococcal – ceftriaxone

Summaries