Name:	Date:	_Class:
Learning Objective: Students will be able to	use the physica	al property of
to classify minerals by	y measuring and	using a table.

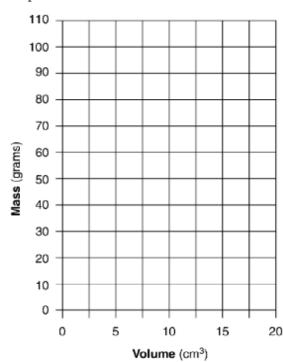
Do Now: Describe the materials and procedure you would follow to determine the density of an object.

In order to identify minerals scientists use multiple tests to determine their **physical properties**. One of those tests includes determining the ______ of a mineral. Since I know that density is a set ratio of _____ per volume, I know that the density of the **same** type of mineral will always be the _____.

- Under identical conditions, several samples of the mineral pyrite are measured, and their densities are compared. The values obtained should show that
 - A. rounded samples are more dense than rough samples
 - B. large samples are more dense than small samples
 - c. small samples are more dense than large samples
 - D. all the pyrite samples have the same density

2.

The accompanying data table shows the mass and volume of four different minerals.


Mineral Sample	A	В	С	D
Mass	50 g	60 g	55 g	40 g
Volume	20 mL	15 mL	10 mL	5 mL

Which mineral has the greatest density?

Base your answer(s) to the following question(s)
 on the data table below, which shows the volume and mass of three different samples, A, B, and C, of the mineral pyrite.

	Pyrite	
Sample	Volume (cm ³)	Mass (g)
A	2.5	12.5
В	6.0	30.0
С	20.0	100.0

On the grid below, plot the data (volume and mass) for the *three* samples of pyrite and connect the points with a line.

И	/e	D	a	,

1.	Observe the	mineral	samples at	your table.	Write o	down any	physical	properties	you car
۸ŀ	serve here.								

2. Analyze the table below. Cross out any minerals in the table that you know **are not** your mystery mineral.

Data Table

	Properties							
Mineral	Surface Color	Luster Streak		Hardness	Density (g/cm ³)			
kaolinite	white	nonmetallic	white	soft	2.6			
galena	silver to gray	metallic	gray black	soft	7.6			
graphite	silver to gray	metallic	black	soft	2.3			
magnetite	silver to black	metallic	black	hard	5.2			
olivine	green	nonmetallic	white	hard	3.4			

3. Using the graduated cylinder and triple beam balance, measure the mass and volume of your mystery mineral. Then, calculate density.

Mineral Sample	Mass	Volume	Density
Mystery Mineral #1			

4. l	Using y	our (calcula	ations	and t	the li	st of	densitie	s ir	the	data	table,	identify	your	myste	ery
mir	neral.															

•	Claim: Mystery Mineral #1 is a mineral named Evidence: (What is your proof? What is your data?)
•	Reasoning: (How do you know?)

Learning Objective: Stud	ents will be able to	and	the methods
used to determine	and	of a mineral by writi	ng procedures.

Even though the color of the mineral may look different on the outside,

Now You Try: Perform a streak test on the mineral at your table:

Mineral 2: Was it scratched by: Your fingernail?
A penny?
Steel nail?
Glass plate?

Streak	plate?

What is mineral #2's hardness?

Base your answer(s) to the following question(s) on Moh's mineral hardness scale and the chart below showing the approximate hardness of some common objects.

Moh's Mineral Hardness Scale				
Talc		1	П	
Gypsum		2		
Calcite		3		
Fluorite		4		
Apatite		5		
Feldspar		ω		
Quartz		7		
Topaz		8		
Corundum		9		
Dia.mond		10		

Approximate Hardness of Common Objects
Fingemail (2.5)
Copper penny (3.5)
Iron nail (4.5)
Glass (5.5)
Steel file (6.5)
Streak plate (7.0)

Which statement is best supported by this scale?

- A fingernail will scratch calcite, but not quartz.
- B. A fingernail will scratch quartz, but not calcite.
- A piece of glass can be scratched by quartz, but not by calcite.
- A piece of glass can be scratched by calcite, but not by quartz.

Data Table

	Properties				
Mineral	Surface Color	Luster	Streak	Hardness	Density (g/cm ³)
kaolinite	white	nonmetallic	white	soft	2.6
galena	silver to gray	metallic	gray black	soft	7.6
graphite	silver to gray	metallic	black	soft	2.3
magnetite	silver to black	metallic	black	hard	5.2
olivine	green	nonmetallic	white	hard	3.4

	ntify the mineral that has the greatest difference between the color of its powder and the color of its surface. [1]		
Ехр	lain why a sample of magnetite will scratch a sample of galena. [1]		
Sci	ratch Test: (used to test hardness)		
1.	Select a fresh, clean surface on the mineral to be tested		
2. Hold the specimen firmly and attempt to scratch it with the point of an object			

known hardness.

Use the tool or index mineral to scratch the unknown mineral.

- 4. Use your finger to look for an etched line to determine if a scratch was made.
- 5. You may need to repeat this process with multiple tools.

3.

6. Use Moh's Scale of hardness to determine the hardness of the unknown mineral.

Describe how a streak test is performed?	
·	
What test is used to determine Hardness?	

- · What is the scale that is used to determine hardness?
- What mineral is the softest?_____.

Mohs Scale of Ha	rdness
Mineral Scale Number	Common Objects
Talo1	-
Gypsum ——2——————————————————————————————————	— Fingernail Copper Penny
Fluorite ——4—— Apatite ——5————	— Steel Nail
Orthoclase ———6———	—— Glass Plate
Quartz ——7——— Cop az ———8———— Corundum ——— 9————	—— Streak Plate
Diamond ——————	

Properties of Some Minerals

Mineral	Properties			Properties		
Willerai	Hardness	Streak	Reaction with Acid			
calcite	soft	colorless or white	bubbles			
chalcopyrite	hard	gray or black	rotten-egg smell			
feldspar	hard	colorless or white	no reaction			
galena	soft	gray or black	rotten-egg smell			
graphite	soft	gray or black	no reaction			
gypsum	soft	colorless or white	no reaction			
hornblende	hard	gray or black	no reaction			

Identify the mineral in the table that is hard, has a black streak, and has no reaction with acid.				
Compared to the chalcopyrite, which property of galena is different? [1]				
Describe the test for determining the streak of most minerals. [1]				