Topic 3: Bonding ### Goals | 3.1 - Ionic Bonding (p. 39-50) | |-------------------------------------| | 3.2 - Covalent Bonding (p. 51-58) | | 3.3 - Molecular Geometry (p. 59-61) | | 3.4 - Synthesis | | Date | Homework | |------|----------| ## (Introduction) ### Activity 1. Complete the table below. | Substance | Givers/Takers/Both | Ionic or Covalent | Conductivity | |---|--------------------|-------------------|--------------| | Deionized Water (Pure H ₂ O) | | | | | Tap Water (H ₂ O + dissolved ions) | | | | | Liquid Rubbing Alcohol (Pure C ₃ H ₇ O) | | | | | Solid Copper (Pure Cu) | | | | | Solid Table Salt (Pure NaCl) | | | | | Aqueous Table Salt (NaCl + H₂O) | | | | | Liquid Hexane (Pure C ₆ H ₁₄) | | | | | Solid Epsom Salt (MgSO ₄) | | | | | Aqueous Epsom Salt (MgSO ₄ + H ₂ O) | | | | | Solid Aluminum (Pure AI) | | | | |--|---------------------------|--------|---| | 2. Provide a hypothesis that explains the co | onductivity differences a | lbove. | | | | | | _ | (Ionic Bonding-3.1) | Notes | | | | |-------|--|--|--| Practice Problems | | |--|------------------------------------| | Complete the tables below: | | | I. Show the formation of an ionic compound betwe | en Li and S. | | PES Dia | agrams | | Li | S | | | | | | | | | | | Lewis Dots and Valence | ce e ⁻ Transfer Diagram | Balanced Ion | ic Compound | | | | | | | | | | | | | | | | | 2. Show the formation of an ionic compound between | en Al and P | |--|------------------------------------| | PES Di | agrams | | Al | Р | | | | | | | | | | | Lewis Dots and Valen | ce e ⁻ Transfer Diagram | | | | | | | | | | | | | | | | | Balanced Ion | ic Compound | | | | | | | | | | | | | | | | | 3. 8 | Show the | formation | of an | ionic com | pound between | Na and N | |------|----------|-----------|-------|-----------|---------------|----------| |------|----------|-----------|-------|-----------|---------------|----------| ### **PES Diagrams** | Na | N | |-----------------------|------------------------------------| | | | | | | | | | | | | | Lewis Dots and Valend | ce e ⁻ Transfer Diagram | Balanced Ion | ic Compound | 4. Show the formation of an ionic compound between Mg and N. | 4. | Show the | formation | of an | ionic | compound | between | Mg and N | V. | |--|----|----------|-----------|-------|-------|----------|---------|----------|----| |--|----|----------|-----------|-------|-------|----------|---------|----------|----| ### **PES Diagrams** | Mg | N | |-----------------------|------------------------------------| | | | | | | | | | | | | | Lewis Dots and Valend | ce e ⁻ Transfer Diagram | Balanced Ion | ic Compound | 5 | Show tha | formation | of an | ionic | compound | hatwaan | Ma and E | |----|-----------|--------------|-------|-------|-----------|---------|-------------| | ິ. | SHOW LITE | IUIIIIaliUII | u an | IOHIC | COHIDOUNG | Detween | ina aliu r. | ### **PES Diagrams** | Na | F | |-----------------------|------------------------------------| | | | | | | | | | | | | | Lewis Dots and Valend | ce e ⁻ Transfer Diagram | Balanced Ion | ic Compound | 1. | | |----|--| 2. | 3. | 4. | (Ionic Bonding-3.1) | Notes | | | | |-------------------|--|--|--| | | | | | | | | | | | | | | | | <u>Procedure</u> | <u>Data</u> | <u>Conclusion</u> | | | | | COTICICATION | ### **Practice Problems** Complete the tables below: | Name | Catio
Dots | n (+)
Charge | Anior
Dots | ı (-)
Charge | Formula | |---------------------|---------------|-----------------|----------------------|-----------------|---------| | Sodium Chloride | | | | | | | Lithium Oxide | | | | | | | Potassium Phosphide | | | | | | | Calcium Bromide | | | | | | | Barium Sulfide | | | | | | | Magnesium Nitride | | | | | | | Aluminum Iodide | | | | | | | Boron Selenide | | | | | | | Gallium Arsenide | | | | | | | Strontium Fluoride | | | | | | | Francium Fluoride | | | | | | | 1. | | | |------------|--|--| 2 | | | | 2. | 3. | A | | | | 4 . | (Ionic Bonding-3.1) ### **Practice Problems** Complete the tables below: | Name | Catio
Dots | n (+)
Charge | Anior
Dots | ı (-)
Charge | Formula | |---------------------|---------------|-----------------|----------------------|-----------------|---------| | Sodium Chloride | | | | | | | Lithium Oxide | | | | | | | Potassium Phosphide | | | | | | | Calcium Bromide | | | | | | | Barium Sulfide | | | | | | | Magnesium Nitride | | | | | | | Aluminum Iodide | | | | | | | Boron Selenide | | | | | | | Gallium Arsenide | | | | | | | Strontium Fluoride | | | | | | | Francium Fluoride | | | | | | | 1. | | | |------------|--|--| 2 | | | | 2. | 3. | A | | | | 4 . | ### (Ionic Bonding-3.1) ### Notes | Precipitation | | | |---------------|--|--| | | | | | | | | | | | | | | | | | <u>Data</u> | Conclusion | | | | 1. | | | | 2. | | | | 3. | | | | 4. | | | | 5. | | | | 6. | | | | 7. | | | | 8. | | | | 0. | | | ### **Practice Problems** | Binary Ionic Compounds | Common Polyator | nic lons | |----------------------------|--------------------|--| | | Nitrite | NO ₂ - | | Syamples | Nitrate | NO ₃ - | | kamples | Sulfite | SO ₃ 2- | | | Sulfate | SO ₄ 2- | | | Phosphite | PO ₃ 3- | | | Phosphate | PO ₄ 3- | | | Carbonate | CO ₃ 2- | | | Hydroxide | OH- | | | Hypochlorite | CIO- | | ules | Chlorite | CIO ₂ - | | | Chlorate | CIO ₃ - | | | Perchlorate | CIO ₄ - | | e" | Permanganate | MnO ₄ - | | | Acetate | C ₂ H ₃ O ₂ | | | Hydrogen carbonate | HCO ₃ - | | Debatemie lewie Commente | Ammonium | NH ₄ * | | Polyatomic Ionic Compounds | Iodate | IO ₃ - | | ramples | | | | Pules | | | | | | | ### Complete the table below: | Name | Cation (+) | Anion (-) | Formula | |-----------------------|------------|-----------|---------| | Sodium Chloride | | | | | Lithium Chlorate | | | | | Copper (II) Carbonate | | | | | Calcium Phosphate | | | | | Calcium Phosphide | | | | | Calcium Phosphite | | | | | Iron (III) Nitrite | | | | | Iron (II) Sulfate | | | | | Gallium Sulfite | | | | | Strontium Iodate | | | | | Nickel (I) lodide | | | | | 1. | | | |------------|--|--| 2 | | | | 2. | 3. | A | | | | 4 . | ## (Covalent Bonding-3.1) ### Notes | lonic vs. Covalent | | | | |--------------------|--|--|--| Covalent Tattoos | ### **Covalent Construction** | Molecule | | | |-----------------------------|--|--| | "Tattoo" Drawing | 3-Dimensional Model Drawing | ## (Covalent Bonding-3.2) ### Notes | Name | Name | | |------|------|--| | | | | | | | | | | | | | Name | Name | | | | | | | | | | | | | | | Name | Name | | | | | | | | | | | | | | ### **Practice Problems** | # of Covalent Bonds = | | | |-----------------------|--|--| | Octet Exceptions | | | | | | | | | | | | Formula | # Bonds | Lewis Structure | |-----------------|---------|-----------------| | O_2 | | | | H_2 | | | | $ m H_2O$ | | | | CO ₂ | | | | NH ₃ | | |--------------------|--| | CH ₄ | | | BCl ₃ | | | SiH ₂ S | | | CBr ₄ | | | PH ₃ | | | OI_2 | | |-----------------|--| | HCN | | | N_2 | | | ClSiP | | | *CH₄O | | | 1. | | | |------------|--|--| 2 | | | | 2. | 3. | A | | | | 4 . | ### (Covalent Bonding-3.2) ### **Practice Problems** | Formula | # Bonds | Lewis Structure | |-------------------------------|---------|-----------------| | SO ₄ ²⁻ | | | | $\mathrm{H_{3}O^{+}}$ | | | | NO ₂ - | | | | PO ₄ ³⁻ | | | | OH- | | | | ClO ₃ - | | |---------------------------------|--| | IO ₃ - | | | $\mathrm{PF_4}^+$ | | | НСР | | | N_2 | | | SiS ₃ ² - | | | 1. | | | |----|--|--| 2. | 0 | | | | 3. | 4. | ## (Molecular Geometry-3.3) ### Notes | Molecular Geometry Hypothesis | |---| | The shape of a covalent compound is caused by | ### **Practice Problems** | Molecular Geometry | Model | Examples | |--------------------|-------|----------| | Linear | | | | Bent | | | | Trigonal Planar | | | | Trigonal Pyramidal | | | | Tetrahedral | | | | Formula | # Bonds | Lewis Structure | Magnet Model | Molecular Geometry | |-------------------|---------|-----------------|--------------|--------------------| | H_2 | | | | | | CO ₂ | | | | | | HCN | | | | | | H ₂ O | | | | | | NO ₂ - | | | | | | SO_2 | | | | | | CH ₂ O | | | |--------------------------------|--|--| | BH ₃ | | | | CO ₃ ²⁻ | | | | H ₃ O ⁺ | | | | NH ₃ | | | | SO ₃ ³ - | | | | CH ₄ | | | |-------------------------------|--|--| | PO ₄ ³⁻ | | | | NH ₄ ⁺ | | | | 1. | | | | |--|--|--|--| 2. | 3. | | | | | <u>. </u> | 4. | 1 | | | | ### **Topic 3: Bonding** ### Practice Test | 1. Ionic Bonding (3.1) | _/ 10 | |--|------------| | (a) Diagram a Lewis Structure that shows formation of an Ionic Compound between Na and F |) <u>.</u> | | (b) Diagram a Lewis Structure that shows formation of an Ionic Compound between AI and Se | е | | (c) Diagram a Lewis Structure that shows formation of an Ionic Compound between Ba and A | at. | | (d) Write a balanced formula for the ionic compound for Iron (II) Nitrate and Iron (III) Nitride | | | (e) Write the electron configuration for the copper atom and the Lithium Sulfide and Lithium S | ulfate | | 2. Covalent Bonding (3.2)/10 | |--| | (a) Draw the Lewis Structure for S_3 (no ring) | | (b) Draw the Lewis Structure for CS ₃ ²⁻ (C in middle) | | (c) Draw the Lewis Structure for BI ₃ (O in middle) | | (d) Draw the Lewis Structure for PO ₂ - (O in middle) | | (e) Draw the Lewis Structure for NI ₄ ⁺ (O in middle) | | 3. | Molecu | ılar | Geome | etrv | (3.3) | |----|---------|------|---------|-------|-------| | J. | MICHECU | IIai | OCOLLIC | zuy ' | (3.3 | /10 (a) Identify the shape of the covalent molecules listed below: H_2O CCI_2O OS_4^{2-} PH_3 CO (b). Draw the ammonia molecule, NH₃ according to the correct molecular geometry (using appropirate dashes and wedges).