Video
Submit one video in .mp4, .wmv, .avi, or .mov format that demonstrates the running of at least one significant feature of your program. Your video must not exceed 1 minute in length and must not exceed 30MB in size.

Program Purpose and Development
2a. Provide a written response or audio narration in your video that:
 - identifies the programming language
 - identifies the purpose of your program; and
 - Explains what the video illustrates.
 (Must not exceed 150 words)

Student Response
https://youtu.be/zT1XNAS4oGE

This program was created using JavaScript. It’s intended to be a turn-based game where players can progress through levels by gaining EXP. The video I’ve provided displays one of the main and essential features of my program, the attack system. At the start, I showed you my starting health, EXP, and gold. Then, I went into level two and displayed the stat check button and both attack buttons. The celestial attack

Score: 7/8

<table>
<thead>
<tr>
<th>Total score</th>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
<th>Row 4</th>
<th>Row 5</th>
<th>Row 6</th>
<th>Row 7</th>
<th>Row 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample: C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This document combines student sample, scoring guidelines and scoring commentary from: Create PT Sample D
does more damage than the twilight attack does in this level. Once the enemy was defeated, I showed you the new values for health, EXP, and gold. After that, I bought the simple dagger from the shop and displayed how much more damage it does than a normal attack. We can also see how the program displays the amount of HP you lose when the enemy attacks you after your attack. They also have the probability to miss their attack. (151 words)

The video demonstrates the major feature of the program which is an attack system (including how to attack and earn EXP). The written response indicates that this program is intended to be a turn-based game where players progress through levels by gaining EXP.

2b. Describe the incremental and iterative development process of your program, focusing on two distinct points in that process. Describe the difficulties and/ or opportunities you encountered and how they were resolved or incorporated. In your description clearly indicate whether the development described was collaborative or independent. At least one of these points must refer to independent program development. (Must not exceed 200 words)

<table>
<thead>
<tr>
<th>Student Response</th>
<th>Scoring Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Row and Task</td>
</tr>
<tr>
<td></td>
<td>Row 2 - Response 2B</td>
</tr>
<tr>
<td></td>
<td>Describes or outlines steps used in the incremental and iterative development process to create the entire program.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Row 3 - Response 2B</td>
</tr>
<tr>
<td></td>
<td>Specifically identifies at least two program development difficulties or opportunities. AND</td>
</tr>
<tr>
<td></td>
<td>Describes how the two identified difficulties or opportunities are resolved or incorporated.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The response earned a point for this row.</td>
</tr>
</tbody>
</table>
made to update the display of the new level and show the appropriate values for everything on screen. (200 words) described is how to unlock levels when a certain amount of EXP is reached. This is resolved by creating a function that checks to see if the EXP has reached the highest level. The second difficulty described is the tracking of the health of the enemy. This is resolved by using a variable and a function to update the variable accordingly.

2c. Capture and paste a program code segment that implements an algorithm (marked with an oval in section 3 below) and that is fundamental for your program to achieve its intended purpose. This code segment must be an algorithm you developed individually on your own, must include two or more algorithms, and must integrate mathematical and/or logical concepts. Describe how each algorithm within your selected algorithm functions independently, as well as in combination with others, to form a new algorithm that helps to achieve the intended purpose of the program. (Must not exceed 200 words)

Student Response
This is one of the most complex algorithms that I've written for my program. I had to repeat this algorithm at least twelve separate times with different parameters in order to fulfill working attack functions for all levels in the game. The algorithm includes not one, but four functions inside of it with it's own individual parameters that have to be changed for each level. The code starts out by initiating playerAttack which rolls a number from 1 to 100. It's declared either a critical, a basic attack, or a miss. If the attack is critical, it subtracts the critical value rather than the basic value from the enemy's health on top of what

```javascript
onEvent("twiAtk6", "click", function(event) {
    playerAttack(85, 65, 90, 100, "eneHPVal6", "youMiss6");
    if (health <= 0) {
        playerDeath(100);
    } else if (enehealth <= 0) {
        enemyDeath(5000, 1500, 10000);
    } else {
        enemAttack(91, 200, 93, 260, "healthVal6", "hpLose6", "atkMsg6", "missMsg6");
    }
});
```

Scoring Guidelines

<table>
<thead>
<tr>
<th>Row and Task</th>
<th>Decision Rules</th>
</tr>
</thead>
</table>
| Row 4 | Do NOT award a point if any one of the following is true:
- the algorithm consists of a single instruction;
- the code segment consisting of the algorithm is not included in the written responses section or is not explicitly identified in the program code section; or
- the algorithm is not explicitly identified (i.e., the entire program is selected as an algorithm, without explicitly identifying the code segment containing the algorithm). |
| Response 2C | Selected code segment implements an algorithm. |

The response earned a point for this row.

The selected code segment for twiAtk6 implements an algorithm.

| Row 5 | The algorithm being described can utilize existing language functionality, or library calls. Response earns the point even if the algorithm was not |
| Response 2C | |
kind of damage is added on from any weapons you might have. Then, it checks to see if the enemy's health is at 0 yet and if it is, it will send you to the level screen again and reward you with gold, EXP, and health. If your health is at 0, it will only give you some health. Otherwise, the function enemyAttack is run and the enemy rolls a number and attacks you instead, also with a chance of a critical and a miss. (199 words)

<table>
<thead>
<tr>
<th>Row 6</th>
<th>Response 2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected code segment implements an algorithm that uses mathematical or logical concepts.</td>
<td>Newly developed. (i.e., a student's reimplementation of the algorithm to find the minimum value)</td>
</tr>
<tr>
<td>AND</td>
<td>Do NOT award a point if any one of the following is true:</td>
</tr>
<tr>
<td>Explains how the selected algorithm functions.</td>
<td>- the selected algorithm consists of a single instruction;</td>
</tr>
<tr>
<td>AND</td>
<td>- the selected algorithm consists solely of library calls to existing language functionality;</td>
</tr>
<tr>
<td>Describes what the selected algorithm does in relation to the overall purpose of the program.</td>
<td>- the selected algorithm does not include mathematical or logical concepts;</td>
</tr>
<tr>
<td>The response earned a point for this row.</td>
<td>- the response only describes what the selected algorithm does without explaining how it does it;</td>
</tr>
<tr>
<td>The selected algorithm includes logical concepts through the use of an if statement.</td>
<td>- the response does not explicitly address the program’s purpose;</td>
</tr>
<tr>
<td>The response explains how the algorithm functions. The response states, “The code starts out by initiating playerAttack… Then, it checks to see if the enemy’s health is at 0 yet, and if it is, it will send you to the level screen again and reward you with gold, EXP, and health. If your health is at 0, it will only give you some health. Otherwise, the function enemyAttack is run…”</td>
<td>- the code segment consisting of the selected algorithm is not included in the written responses section or is not explicitly identified in the program code section; or</td>
</tr>
<tr>
<td>The response describes what the algorithm does in relation to the overall program. The response states, the algorithm is used “in order to fulfill working attack functions for all levels in the game.”</td>
<td>- the algorithm is not explicitly identified (i.e., the entire program is selected as an algorithm, without explicitly identifying the code segment containing the algorithm).</td>
</tr>
</tbody>
</table>

Do NOT award a point if any one of the following is true:
The response earned a point for this row.
The selected code segments includes two or more algorithms, specifically playerAttack, playerDeath, enemyDeath, and enemAttack.
The response indicates that playerAttack includes mathematical and logical concepts. It states that the procedure “rolls a number from 1 to 100”, includes conditionals for “if the attack is critical”, and “subtracts the critical value… from the enemy’s health”.
The response explains how playerAttack functions independently. The response states, playerAttack “rolls a number from 1 to 100. It’s declared either a critical, a basic attack, or a miss. If the attack is critical, it subtracts the critical value rather than the basic value from the enemy’s health on top of what kind of damage is added on from any weapons you might have.”

2d. Capture and paste a program code segment that contains an abstraction you developed individually on your own (marked with a rectangle in section 3 below). This abstraction must integrate mathematical and logical concepts. Explain how your abstraction helped manage the complexity of your program. (Must not exceed 200 words)

```javascript
function levelUnlock() {
  if (exp >= 10000) {
    hideElement("sixLk");
    showElement("sixOpen");
  } else if (exp >= 8000) {
    hideElement("fiveLk");
    showElement("fiveOpen");
  } else if (exp >= 5000) {
    hideElement("fourLk");
    showElement("fourOpen");
  } else if (exp >= 1500) {
    hideElement("threeLk");
    showElement("threeOpen");
  } else if (exp >= 500) {
    hideElement("twoLk");
    showElement("twoOpen")
  }
}
```

Student Response
An abstraction is something that can be used to compress code down and simplify it. This means we do not have to repeat a long

<table>
<thead>
<tr>
<th>Row and Task</th>
<th>Scoring Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 7</td>
<td>Responses that use existing abstractions to create a new abstraction, such</td>
</tr>
</tbody>
</table>
block of code over and over again and repeat it in the program. Instead, we can create an abstraction and simplify the process a lot more. One of the abstractions in my program is the `levelUnlock()` function. Every time the program returns to the level selection screen after completing a level, it runs this abstraction and goes through the requirements for each level to be unlocked. Now, instead of having to individually go through and check the EXP requirements for every level whenever a level is completed, I can easily use the abstraction `levelUnlock()` to simplify the complexity of my program. Before I came up with this abstraction to use in my program, I was going to have to create a big else if statement for every time the enemy was attacked and their health reached zero which would send them back to the selection screen. The else if statement would have been redundant to keep repeating for every attack button in the program, so crafting an abstraction made it a lot easier to manage. (200 words)

Response 2D

Selected code segment is a student-developed abstraction.

as creating a list to represent a collection (e.g., a classroom, an inventory), would earn this point.

Do NOT award a point if any one of the following is true:
- the response is an existing abstraction such as variables, existing control structures, event handlers, APIs;
- the code segment consisting of the abstraction is not included in the written responses section or is not explicitly identified in the program code section; or
- the abstraction is not explicitly identified (i.e., the entire program is selected as an abstraction, without explicitly identifying the code segment containing the abstraction).

The response earned a point for this row.
The selected code segment is a student-developed function `levelUnlock`.

Row 8
Response 2D

Explains how the selected abstraction manages the complexity of the program.

Responses should not be penalized for explanations of abstractions that are not developed by the student.

Do NOT award a point if any one of the following is true:
- the explanation does not apply to the selected abstraction; or
- the abstraction is not explicitly identified (i.e., the entire program is selected as an abstraction, without explicitly identifying the code segment containing the abstraction).

The response earned a point for this row.
The response explains how the abstraction manages complexity. The response states, “Instead of having to individually go through and check the EXP requirements for every level whenever the level is completed, I can easily use the abstraction `levelUnlock()` to simplify the complexity of my program.”