
Sliding Window Operation Improvement 
 

Goals​ 1 

Scope of Use Cases​ 2 
In-scope Use Cases​ 2 

In-scope current use cases​ 2 
Out-of-scope Use Cases​ 3 

Out-of-scope new use cases​ 3 
Out-of-scope complex existing use cases​ 3 

Prior Arts​ 4 
Blink WindowOperator​ 4 
Window Slicing POC​ 4 

Scope​ 5 
Observations from Prior Arts​ 5 
Problem Statements​ 5 

Design​ 6 
Overview​ 6 
Runtime/Operator Improvements​ 6 

[DR1] Full Iterable buffer Improvement​ 6 
[DR2] Paned incremental aggregation​ 6 

Internal API Improvements​ 7 

Implementation Plan​ 8 

Context Summary​ 9 
Discussion Threads​ 9 
Design Docs​ 9 
JIRAs​ 9 

 

 

Goals 
The goal of this document is to layout a roadmap planning for the improvement of Flink’s 
window operator - in order to support (1) current use cases more efficiently; and (2) extended 



new use cases, of windowing operation based on various previous discussions (mailing list, 
JIRA, etc). 
 
This document is the first phase implementation planning for the overall proposal [D1]. It is 
targeted to improve most of the pain points discussed in [T1]. 
 
 

Scope of Use Cases 

In-scope Use Cases 

In-scope current use cases 
The following are use cases we would like to target which experienced poor performance 
currently. They are mostly discussed in the original sliding window optimization JIRA [J1], and 
should be supported without any public DataStream API changes. 
 
[IU1] Full buffering of incoming elements across multiple windows, with rich or process 
window function 
The first type of current use cases requires incoming elements to be fully buffered across 
multiple windows as is. The reason is that the type of window functions (rich, process) used 
does not have efficient incremental “aggregation”.  
 
[IU2] Computation of incoming elements across multiple windows, with incremental 
aggregation. 
This type of current use cases requires incoming elements to “incrementally” buffer into the 
appending state, such as “Reduce” or “Aggregate” functions. Due to the fact that efficient 
incremental aggregate is possible, it is better to keep the current multi-window buffering 
approach. 
 
[IU3] Computation of incoming elements across multiple windows, with efficient merge 
window function 
This type of current use cases requires incoming elements to be computed across multiple 
windows. However the performance is poor, depending on the overlapping nature of the 
multi-window span.  
 



Out-of-scope Use Cases 
In order to deliver a more actionable, executable design doc, the following are not in scope of 
this discussion. We will evaluate these use cases as a next step. 
 

Out-of-scope new use cases 
The following use case are some of the ones discussed in the new mailing list thread [T1] and 
in the discussion on [J2]. These use cases “may” require new public DataStream API changes. 
 
[OU1] Full buffering of incoming elements that fires computation with neighboring 
elements 
This type of new use cases requires no collapse based on a count or time range; instead, it 
collects output result for incoming elements based on its neighboring elements (Defined 
similarly with SQL as OVER window aggregate). However, the triggering rule can be more 
flexible in DataStream perspective. 
 
[OU2] Full buffering of incoming elements that fires computation with neighboring 
elements, with efficient retracting window function. 
Similar to [OU1], in addition, this type of use cases contains operator with efficient retracting 
methods (see Table aggregation function for example) 
 

Out-of-scope complex existing use cases 
[OU3] Definitively non-overlapping windows 
These types of use cases were discussed in [D1] as one of the main use cases, however in 
order to support such characteristic, a major change of public API is required with very little 
gain. 
 
[OU4] Concatenating windows 
These types of use cases were discussed in [D1] as one of the futuristic use cases. This 
involves a sequence of windowing operation over the exact same key. This would not be 
efficient on current API as the windowing results are interpreted as normal DataStream. For 
these type of use cases to work properly, a modification of API is required. 
 
[OU5] Multi-timeout session windows 
These types of use cases were discussed in [D1] as one of the futuristic use cases. This 
involves a parallelly operating window operators with session assigners that contains different 
timeout periods. For these type of use cases to work properly, a modification of API is required. 
 



 

Prior Arts 

Blink WindowOperator 
[A1] Blink window operator with aggregate functions 
 
Blink’s window operator used in flink-table package (link) has specific improvement used to 
optimize windowing operation on aggregation functions. These includes: 

1.​ Specific internal version of the WindowFunction interface that extends to support not 
only the process element, but also interacts with window assignments. 
(assignActualWindows, assignStateNamespace, etc) 

2.​ Window states designed for retraction when available. (subkeystates, etc) 
3.​ Much simpler design ( no merge window ) 

 
Due to the fact that most of these operations are designed for aggregate functions, we would 
not be able to reuse directly in DataStream API. However, some of the component we described 
above should be leveraged. 

Window Slicing POC 
[A2] Window with internal slicing state 
 
Window slicing POC #1 (link) focus on directly alter the windowing state: split the state into 
slicing state + slice-to-window state. 
 
This approach is very similar to [A1] approach with paned window functions (by creating the 
concept of actual window and affected window). However, this POC is designed for no only 
aggregate function, but all window functions including reduce, fold as well as a more generic 
window apply (via Fluent iterables). 
 
This POC approach requires minimum public API changes in order to make the slicing work 
properly. However, backward-compatibility of internal state is a problem since the internal state 
is splitted into 2 parts. 
 
 
[A3] Window with external slicing and merging step 
 
This approach (link) focus on explicitly allowing users to control the “state” as well as the 
“windowing” operation.  

https://github.com/apache/flink/blob/blink/flink-libraries/flink-table/src/main/java/org/apache/flink/table/runtime/window/WindowOperator.java
https://github.com/apache/flink/compare/master...walterddr:FLINK-window-poc_aligned-assigner
https://github.com/apache/flink/compare/master...walterddr:FLINK-window-poc_separate_operator


 
Instead of using WindowedStream compiles user-defined windowing function into “state” 
appending step and window processing step, it removes such complexity by directly letting user 
configure the 2 steps separately.  
 
This POC approach requires significant amount of API changes, and required some 
simplification on the DataStream windowing API. However, it does not introduce any 
backward-compatibility issues. 
 

Scope 

Observations from Prior Arts 
The basic observation from previous experimentations is that: 

●​ There’s no one-solution-fits-all optimization mechanisms that can be used to optimize 
sliding window directly [A1,A2]. Performance experiment indicated that the result of the 
optimization depends highly on  

○​ (1) the pattern of the window. 
○​ (2) the pattern of the incoming traffic. 
○​ (3) the complexity of the window process function.  

●​ There are use cases that cannot be covered by current windowing API: They require 
extra amount of flexibility for users [A3]. 

○​ Same-window operations 
○​ Cascade window operations 
○​ Special operations that requires more granular control of the relationship of 

window state and window function. 
 

Problem Statements 
From the observation we conclude that:  

●​ The current window operator hides the complexity of how a specific window function is 
optimized in an window operator by: Splitting the operations into (1) efficient internal 
window state; (2) internal window function that process the internal window state. 

 
The problem statement for this design doc is: How to provide better optimization of the window 
operator on “sliding window”. As we’ve discussed in the usage scope and observation sections: 
we will only target [IU1, IU2, IU3] without public API changes. 
 



Design 
 

Overview 
The overall design consists of 2 major parts: Runtime/Operator Improvements and API 
improvements.  

Runtime/Operator Improvements 
The runtime/operator changes will be pretty substantial in order to utilize a more efficient 
windowing mechanism, we will break down the improvement design into 3 parts. 
 

[DR1] Full Iterable buffer Improvement 
The first design is to improve the window function where full iterable buffers are generated per 
window [IU1]: this is especially costly in memory when trying to utilize against multiple 
overlapping windows.  
 
The way we would like to improve this particular use case is to introduce “affected window” 
concept proposed in [A1] to only record elements in the “actual window” instead of the entire set 
of overlapping window collection.  
 
When invoke window processing, all element partitions in “affected windows” are “grouped” 
together and send through the processing method of the window function. 
 

[DR2] Paned incremental aggregation 
The second design is a continuation of the work described in [DR1]. With the possibility to 
assign “affected window”, it is also applicable to other window functions incremental 
aggregations, provided that an efficient merge method exists.  
 
In order to support more general “buffering” method, we would like to introduce “affected state” 
concept. Similar to affected window: upon receiving the elements for the affected window, 
operator should invoke internal window function to process and update the affected state.  
 
With this design, the [DR1] approach is merely a special case of [DR2] with an iterable affected 
state.  
 



 
However, the design should consider how to deal with the two types of approaches, 
corresponding to [IU2, IU3] :  

1.​ Directly incremental aggregation towards all assigned windows. 
2.​ Only incremental aggregate against the “affected window”, and the use merge operation 

to compute the overall results similar to how we invoke processing method in [DR1]. 
See [DA1] for more details on this. 
 

Internal API Improvements 
Although we would like to make minimum to no changes with public facing APIs in DataStream, 
there are some modifications needed in order to support [RD2]. We propose to have these 
changes only affects the @Internal APIs. 

 
[DA1] Extension of Internal Window Function [IN DISCUSSION] 
 
Internal window functions are currently used during WindowOperator generation. It splits the 
actual user function into (1) one that used in the AppendableState that is used to buffer or 
incrementally aggregate incoming elements; and (2) one that is used to process the 
AppendableState as the window function itself. 
 
In order to create pane-based, or slice-based iterable buffer Improvement, and indicator is 
required to indicate which “slice” is currently being updated upon incoming processElement.  
 
Comparing with the approach [A2] used to add assigner public API, this is implemented in [A1] 
elegantly without changing the public API or adding any special window assigner: Flink internal 
can control the operator process, and the internal state utilization. 
 
In addition, this also makes the implementation piece easier, especially in the backward 
compatibility section. 
 
 
Currently, Flink controls how internal window functions are utilized in WindowedStream.  

●​ For [IU1], the approach is to improve all the fully iterable buffering operators.  
●​ For [IU2,IU3], it is not directly obvious which internal window function should be used 

under circumstances. More details will be discussed in the implementation section. 
 
 
 

https://github.com/apache/flink/tree/release-1.7/flink-streaming-java/src/main/java/org/apache/flink/streaming/runtime/operators/windowing/functions
https://github.com/apache/flink/blob/blink/flink-libraries/flink-table/src/main/java/org/apache/flink/table/runtime/window/internal/PanedWindowProcessFunction.java#L52
https://ci.apache.org/projects/flink/flink-docs-release-1.7/api/java/org/apache/flink/streaming/api/datastream/WindowedStream.html


Implementation Plan 
The implementation plan of this is as following: 
 

1.​ Improve [IU1] scenarios where full buffering of window elements are inevitable by 
reusing pane iterable buffering in [DR1] for WindowOperator 

2.​ Support EvictingWindowOperator for [DR1]. 
3.​ Introduce proper internal window function described in [DR2] that works with [IU3] and 

at the same time make sure existing internal window functions continue to support [IU2].  
4.​ [IN DISCUSSION] Introduce indicator [DA1], that indicates whether windowing operator 

should be done as either [IU2], or [IU3]. 
 
 
 
 

 



Context Summary 

Discussion Threads 
[T1] Window improvement using slicing discussion 
 

Design Docs 
[D1] Optimize Window Operator with Slicing  
 

JIRAs 
[J1] FLINK-7001 
[J2] FLINK-11276 

http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Improvement-to-Flink-Window-Operator-with-Slicing-td25750.html
https://docs.google.com/document/d/1ziVsuW_HQnvJr_4a9yKwx_LEnhVkdlde2Z5l6sx5HlY/edit#heading=h.qr0nyau4crad
https://issues.apache.org/jira/browse/FLINK-7001
https://issues.apache.org/jira/browse/FLINK-11276

	Sliding Window Operation Improvement 
	 
	Goals 
	Scope of Use Cases 
	In-scope Use Cases 
	In-scope current use cases 

	Out-of-scope Use Cases 
	Out-of-scope new use cases 
	Out-of-scope complex existing use cases 


	Prior Arts 
	Blink WindowOperator 
	Window Slicing POC 

	Scope 
	Observations from Prior Arts 
	Problem Statements 

	Design 
	Overview 
	Runtime/Operator Improvements 
	[DR1] Full Iterable buffer Improvement 
	[DR2] Paned incremental aggregation 

	Internal API Improvements 
	 


	Implementation Plan 
	 
	Context Summary 
	Discussion Threads 
	Design Docs 
	JIRAs 


