
Bolt Engine Cheatsheet

This document is an UNOFFICIAL concepts and code reference for use with BoltEngine 1.0

This document is not a great ‘tutorial’ resource, but instead should be read after a tutorial to get a better idea of what is really going on. It is also useful
if you are familiar with other Unity Networking systems and want to get straight into the meat of how Bolt works. This description focuses on the overall
architecture of the Bolt Engine, and how a game would be written using Bolt (including a cookbook section).

This is not an official “Bolt Engine” document. It is being written to help the Bolt Community.
​ The latest official BOLT TUTORIAL is at https://doc.photonengine.com/en/bolt/current/getting-started/bolt-101-getting-started
Table Of Contents

1. BoltEngine Fundamentals
The heart of the BoltEngine programming model: The BoltEntity
The BoltEngine Developer experience

BoltEngine Debugging and Logging workflows
BoltEngine and version control
Upgrading Bolt versions

BoltEngine supported platforms & their quirks (TODO)

2. The three main Concept Groups in Bolt
Bolt Network Roles (Server and Client)
Bolt Entity Roles (Owner, Controller and Proxy)

Owner/Controller duality is a key source of confusion
Bolt Message types (Commands, States and Events)

State callbacks
An additional but important ‘message type’: IProtocolToken during BoltNetwork.Instantiate()/Attached() and Connect()
How Commands become State changes

3. Bolt Code and Objects: Classes, Singletons, Callbacks, GameObjects, Components and Scripts
Common Bolt Super-Classes that your code will sub-class
Bolt Callbacks

Global and Entity contexts for callbacks
Execution order and responsibilities of Bolt Callbacks
Extra notes on Scene Loading callbacks: SceneLoadLocalDone() and SceneLoadRemoteDone()

Bolt Singletons & statics - always there when you need them
Bolt GameObjects - Prefabs, Parenting and more

Making Bolt Entities as Unity Prefabs
Parenting, deparenting and reparenting BoltEntities (TODO)
Don’t make BoltEntity’s GameObject inactive
Setting the UniqueId for a Bolt Entity
Typical naming conventions and responsibilities for your Bolt-related scripts

4. A BoltEngine Cookbook
Recipe #000: Start with a stable base game (the tutorial) and check Bolt is behaving
Recipe #001: Creating a simple physics-controlled ball
Recipe #002: Creating a simple NPC that can take damage and die (TODO)
Recipe #003: Creating a drop item from a dying NPC (TODO)
Recipe #004: Creating stuff that floats around with the player (like drones) (TODO)
Recipe #005: A NPC with persistent state in a database (TODO)

Building a Go-based intermediate ‘database server’ to use protocol buffers
Building a protocol buffer client in Unity to connect to the ‘Game DB Server’

Recipe #006: Customized Bolt Settings configuration at runtime (TODO)
Recipe #007: Interpolating / DR for less jitter (TODO)
Recipe #008: Inventory for a Player (TODO)

5. Appendix
Information Sources used in this document
To Do’s to update this doc
Game genres that BOLT is not appropriate for

8. Troubleshooting resources

1. BoltEngine Fundamentals

With Unity Personal all features should be available as of 0.4.3 and Unity 5

The heart of the BoltEngine programming model: The BoltEntity

Bolt makes Unity’s GameObjects into BoltEntities which can sync state over the network automatically, and with lots of opportunity for
prioritizing/customizing those sync operations. Unlike other Unity network systems, by default Bolt does the serialization and syncing. Essentially you
add code / adjust parameters to change the default serialization/syncing methods.

1

http://www.boltengine.com/
https://doc.photonengine.com/en/bolt/current/getting-started/bolt-101-getting-started

The main Bolt docs have a good explanation of BoltEntities, Entity ownership, and Entity properties so read that information first.

The key points are that:

●​ The BoltEntity is a Unity GameObject with the BoltEntity script attached - that ensures the GameObject (and Bolt Entity) will be
represented/replicated on the network by Bolt.

●​ A BoltEntity is defined in the Unity Editor by adding a Bolt Entity script component to a normal Unity Game Object (almost always a prefab)
○​ To be precise on nomenclature, ‘BoltEntity.cs’ is the script used to make a GameObject into a “BoltEntity” as described here.

●​ A BoltEntity must be instantiated at runtime over the network in one of the following manners:
○​ 1) By calling BoltNetwork.Instantiate()

■​ Using a BoltPrefabs.<theBoltGeneratedEntityId> parameter or
■​ Using a Resource.Load(path) GameObject Parameter (as long as it is a Prefab that contains a BoltEntity).
■​ The Owner can reliably pass information about the entity to the other nodes as an IProtocolToken at this time, and they can read

this when they Attach()
○​ 2) By having an object in the scene which has a Bolt Entity.

■​ Note that there are issues with this in 4.1.x - see this forum discussion.
■​ The owner is the host

●​ The content in the shared/replicated information is defined using a Bolt State in the Unity Editor (Window -> Bolt Engine -> Bolt Assets)
○​ The State can have multiple parameters. Each parameter can have individual choices for replication scope, priority etc.

●​ The request of changes to State is as follows (note that is uses some terms defined later in this doc, but is here for completeness):
○​ The entity’s Controller node has a callback called SimulateController() and this puts the requested actions (move, fire etc) into a

Bolt Command.input structure.
○​ Bolt then sends this Command to the Owner (the node which is the authoritative server for this entity)
○​ The entity’s Owner node decides what is valid to do, then updates the entity’s State object properties in a callback called

ExecuteCommand().
○​ Bolt then replicates the Owner’s new State to the entity’s Proxies and (optionally, depending on a per-property flag in the State

definition) the Controller.
○​ There is also an optional step where Bolt sends the ‘result’ back to the Controller’s ExecuteCommand() with a Command with

resetState=true and the decided values in Command.result - this is used for Authoritative servers typically.

Bolt will destroy these entities in the following cases only:
1.​ If you disable the GameObject the BoltEntity script is on
2.​ If you load a scene and the GameObject is not marked as “don’t destroy on load”
3.​ ??Disconnect??

The key purpose of Bolt is this abstraction it provides: efficiently syncing the State of BoltEntities (as a result of Commands sent from Controllers to
Owners). In particular, it has an efficient wire protocol - it compresses the State changes into a byte array and sends diffs over the network to remote
nodes - and has prioritization options for the network traffic.

Bolt very naturally supports the mode where one of the player nodes is the server. However, it has no way yet to migrate/failover state to a new server
(e.g. as uLink does).

The BoltEngine Developer experience

Bolt installs additional Editor experiences into Unity for working with Bolt and Bolt Assets, and menu options to recompile generated code.

Normal Unity Prefabs are made ‘special’ by adding a BoltEntity component to them.

●​ After this, you **must** run ‘Assets -> Bolt Engine -> Update Prefabs Database in order to continue the Bolt workflow.

Bolt States & Commands are used to define how replication works for the properties on a Bolt Entity. They are defined in the Bolt Editor Window. Use
the Bolt Assets window (Window -> Bolt Engine -> Bolt Assets) to view and create States and Commands.

●​ After this, you **must** run ‘Assets -> Bolt Engine -> Compile Assembly’ in order to continue the Bolt workflow. This auto-generates
the code required to sync the Bolt Entities based on your definitions.

●​ There are some additional Bolt assets which will be discussed later in this doc - Events and Structs (now called Objects). These are defined
and generated the same way.

BoltEngine Debugging and Logging workflows

●​ Bolt has some workflows that are nicer on Unity Pro (“Window -> Bolt Windows -> Scenes -> “Debug Start” scene -- This starts clients &
server), but Bolt overall works fine with the free Unity version.

●​ As of Bolt 0.4.1.x there are DEBUG builds of Bolt (you decide to have them by installing the debug version of Bolt) which do a lot of checking
for coding mistakes, but are 4x-5x slower than the RELEASE builds. See http://doc.photonengine.com/en/bolt/current/setup/builds for details.

●​ There is also a separate “debug mode” in Bolt Settings - this shows information about the Bolt Entity that you are looking at.
Logging

●​ There is also a Bolt debug ‘console’ that can be toggled and/or shown by default. See Bolt Settings for the toggle and initial state. The toggle
defaults to TAB.

○​ It is possible to save the console output to a file - see Bolt Settings; "log targets" -> (select) "file". This creates a timestamped file, such
as Bolt_Log_SERVER_2014Y-12M-29D_21H8M48S_287MS.txt

○​ If you want it intertwined with the unity player log, you can enable the player log in the unity player settings, and then "log targets" ->
"unity"

○​ You can optionally have the Unity Debug.Log() output be shown in the Bolt debug console.
○​ It’s not really a ‘console’ - it doesn’t allow commands to be edited/input

●​ There are BoltLog.Info(), .Warn etc methods that use this debug terminalA handy wrapper for BoltLog.Info() in Entity-related classes is the
following - it will show the class, entity name and entity Role (Owner / Controller):
 private void _tracer(string msg)

 {

 if (fNoisyDbg)​ ​ // Define this somewhere in the Class. Set it in Inspector or programmatically when you want noise

2

http://doc.photonengine.com/en/bolt/current/setup/api-docs#BoltEntity
http://doc.photonengine.com/en/bolt/current/in-depth/entity-ownership
http://doc.photonengine.com/en/bolt/current/getting-started/bolt-102-properties-and-callbacks
http://docs.unity3d.com/ScriptReference/Resources.Load.html
http://forum.boltengine.com/viewtopic.php?f=6&t=737
http://wiki.boltengine.com/wiki/17/authoritative-server-faq
https://doc.photonengine.com/en/bolt/current/reference/authorative-server-faq
http://doc.photonengine.com/en/bolt/current/setup/builds

 BoltLog.Info(this.GetType().Name + ".cs:" + entity.name + "[" + (entity.isOwner ? "O" : "") + (entity.hasControl ? "C" : "") +

"]: " + msg);

 }

BoltEngine and version control

●​ The special Bolt Assets - i.e. Bolt Commands, Bolt Events, Bolt States, Bolt Objects are defined in the editor but stored in
Assets/bolt/project.bytes so this file should be committed when you change these. As the name implies, this is a binary format at present
:(

●​ When updating to a new version of Bolt, it is best to then commit the bolt dll in the project - this is at Assets/bolt/assemblies/bolt.dll and
Assets/bolt/assemblies/bolt.user.dll

Upgrading Bolt versions

●​ The upgrade process in Bolt is quite simple. An official upgrade manual can be found at:
http://doc.photonengine.com/en/bolt/current/setup/upgrading

BoltEngine supported platforms & their quirks (TODO)

Target Client constraints Server constraints Debugging notes

Standalone player for Mac/PC

iOS

Android

Windows Store Apps Not supported yet

WebGL Not supported yet Be aware of crossdomain.xml
requirements

PS Vita Not supported yet

XB1 Contact support@boltengine.com
for info

PS4 Contact support@boltengine.com
for info

Steam Contact support@boltengine.com
for info

2. The three main Concept Groups in Bolt

Bolt has three related but different groups of concepts - network roles, entity roles and message types. Do not mix these concept groups up or you
will have a bad day. They are interrelated but different.. for example the Server might be an Owner for some Entities, but not for others..

The tables below summarize the key aspects of these concept groups and their concepts:

Concept Group Purpose Sub-concepts

Bolt Network Roles Network Roles determine which of the nodes is the (single) Server,
and how the nodes are connected to the Server.

Server and Client

Bolt Entity Roles Entity Roles determine (for a given entity) which node will own that
Entity’s state, which node can request changes to that State (via
Commands), and which nodes can only receive State changes

Owner, Controller and Proxy

Bolt Message types Define the kinds of messages that are sent between Bolt nodes in
order to communicate state change requests or notifications.

Commands, States and Events

In this document we define ‘node’ as being an instance of a Unity runtime that is using BoltEngine and intends to connect with other nodes to enable
multi-player gaming.

Bolt Network Roles (Server and Client)

3

http://doc.photonengine.com/en/bolt/current/setup/upgrading
mailto:support@boltengine.com
mailto:support@boltengine.com
mailto:support@boltengine.com

A node must have exactly one Network role: either a Client or a Server.

●​ Clients connect to Servers via Connections.
●​ Currently, in Bolt 0.4.1.x, there are no connections between Servers, and no connections between Clients. - i.e. it is a hub-and-spoke topology

only. That may change when Master Servers come in ​

Bolt is using what is commonly referred to as the 'Client/Server Model', this means that one computer is considered the Server, everyone else is
considered a Client and they connect directly to the Server. There are a couple of things to note about this.

1.​ The server have one BoltConnection object per client. All client connections can be found under BoltNetwork.clients. On the clients themselves
this will return zero items.

2.​ The clients have only one BoltConnection which is the connection to the server. This connection can be found at BoltNetwork.server. This
property returns null on the server itself.

3.​ There is no connection that refers to yourself in any way, they always represents a link to another computer.
4.​ There are no direct connections between clients, all data is passed through the server.

Bolt Network Roles: Server Client

What is the job of a node that
has this Network Role?

The Server is the node that is hosting the game.

If the developer wants an “Authoritative Server” then the
Server will also be the Owner of (most) BoltEntities in order to
prevent cheating and ensure that there is a consistent game
view (see next section).

A Client is normally any node that is connected to the game but
is not considered to be the Server.

How many nodes can have this
Network role?

Exactly 1 0 or more

Can a node have additional
Network roles?

No No

How is this Network Role
assigned?

Node selects Network role during startup (See below) Every remote connection from the Server is a Client.

Code example of assigning this
Network Role

BoltInit.cs has special Bolt Internal code that handles Client and Server initialization using the BoltLauncher class. Whilst
starting to use Bolt, BoltInit.cs should be sufficient.

For clues on how to roll your own Client/Server initialization for advanced/customer scenarios, see this post from fholm that
describes BoltNetwork.InitializeServer() and BoltNetwork.InitializeClient() which you can call directly. You can
check in the BoltDebugStart.cs and BoltDebugStartNonPro.cs scripts for more clues.

Code example of checking if a
node has this Network Role:

(BoltNetwork.isServer) (!BoltNetwork.isServer)

Specific callbacks the node will
get ONLY if it has this Network
Role

void ConnectRequest(endpoint, token);
void Connected(connection, token);
void ConnectFailed(endpoint);
void ConnectRefused(endpoint);
void Disconnected(connection);

????

Disconnect BoltLauncher.Shutdown(); BoltLauncher.Shutdown(); // Disconnect from Server

Connections act as a conduit for transferring messages between nodes. Within Bolt, a connection is considered to be a link to another Client/Server
over the network. This means a connection can refer to either a Client or the Server.

Note that there are settings for enabling manual connection acceptance in the BoltSettings window. Once enabled, the Server can have code to
accept/reject connections, such as:
public override void ConnectRequest(UdpKit.UdpEndPoint endPoint, IProtocolToken token)

{

 if (/* some test */)

 PlayerData data = (PlayerData) token;

 else

 BoltNetwork.Reject(endPoint);

 // etc…

}

0.4.3 no longer need override?

// TODO - also note what Sessions are (src).. Scope modes and maybe Scene IDs.

4

http://wiki.boltengine.com/wiki/17/authoritative-server-faq
http://forum.unity3d.com/threads/released-bolt-the-new-generation-of-networking-solution-for-unity.248912/page-5
http://www.reddit.com/r/boltengine/wiki/index

Bolt Entity Roles (Owner, Controller and Proxy)

Each individual instantiation of a Bolt Entity has a well-defined Owner, Controller, and Proxy/Proxies. This Entity Role determines whether the entry
initiates, validates/applies, or receives state changes.

In a nutshell, The Owner 'owns' the State of the object and can replicate it out to other nodes. The Controller has the right to send Commands to the
Owner requesting State changes. The Proxy just receives state changes.

In more detail, the roles are as follows:

Bolt Entity Roles: Owner Controller Proxy

What is the job of a node that
has this Entity Role for a
specific instantiated Bolt
Entity?

See also
http://doc.photonengine.com/
en/bolt/current/in-depth/entity-
ownership

Causes a BoltEntity to be instantiated
using BoltNetwork.Instantiate() and then
implicitly becomes the Owner for this
entity.

Owner applies self-initiated State changes,
and/or requested State changes (Owner
gets these requests from the Controller as
Commands and if valid, applies them to
the State during ExecuteCommand())​
​
The Owner of a BoltEntity distributes the
resulting state changes to Proxies. The
Owner will also optionally send this to the
Controller (if the Joystick icon in the
State's property in the Bolt Editor is
enabled). (src)

The State of a BoltEntity can only be
modified by the Owner. Trying to change
the State from a non-Owner node will
mean the State will not get replicated over
the network.

Sends State change Requests to the Bolt
as Commands to the Entity Owner’s
command queue - for example a
movement intent based on player input.

A Controller cannot change a Bolt Entity’s
State directly. Any State changes it makes
directly will **not** be replicated to
Proxies/Owner.

Similarly, "having" Control of an entity
does **not** mean you can move it
directly with a transform; you still need to
use commands - i.e. create a Command in
SimulateController() and execute it in
ExecuteCommand(). This will of course
work locally, and will replicate over the
network if your entity happens to also be
the Owner, but that is usually an ‘accident’
of coincidence when you happen to test
using a Player on the ‘Server’ node in a
p2p-style setup with an Authoritative
Server.

ONLY show State changes
(Gets these State changes from
Owner)

Cannot initiate state change requests
to Owner because
SimulateController() does not get
called since node is not a Controller
for this Entity. Updates to State would
not get replicated since it is not an
Owner.

How many nodes can have
this Entity Role for a specific
instantiated BoltEntity

Exactly 1 0 or 1 0 or more

Can a node have other Entity
Roles also?

Yes: Owner might also be Controller
(e.g. Player on a p2p ‘server’)

Yes: Owner might also be Controller
(e.g. Player on a p2p ‘server’)

No.

How is the role node
determined

The Instantiator of the Entity becomes the
owner by default, unless specifies who the
owner will be.

Ownership cannot be transferred.

By default there is no Controller.
The Owner may decide which node will be
the Controller.

If the node is neither the Owner or
Controller, then it is a Proxy

Code example of assigning
this role for a specific Bolt
Entity ‘entity’

Ownership is assigned at create time using
BoltNetwork.Instantiate(). This can
be on the local node (no param), or
remotely by specifying the connection of
the node that we wish to be the owner

TODO: Example of how to create entity on
a connection -- Thus ownership can be set
by instantiating on the required connection

The Owner can take control with:
entity.TakeControl()

The owner can assigned control to another
node with:
entity.AssignControl(connection)

The most reliable callback to have called
once Control has been assigned is:
public void override
ControlGained() { .. }

Control can be released with:
ReleaseControl(token) or
RevokeControl(token)

n/a - is Proxy by default

Test if the node has this role
for a specific Bolt Entity
‘entity’

entity.isOwner me: entity.hasControl
other:
entity.IsController(connection)

However - the Controller role is not
initially set at entity creation time - it is
assigned and can be checked this way only
once TakeControl() or
AssignControl() has been called. So
callbacks like Startup(), Awake() and even
Attached() (especially on the Owner) are
unreliable places for code that should have
special behavior when a node is assigned
control for an entity. Instead, use
ControlGained() for this situation.

(!entity.hasControl &&
!entity.isOwner)

Specific callbacks the node
will get ONLY if it has this
Entity Role

myController :
Bolt.EntityEventListener<iMySerial
izer>

●​ BoltEntity.SimulateOwner()
○​ Called for Owner, doesn’t

seem to do much.
●​ BoltEntity.ExecuteCommand(..

.)
○​ Called also for Controller, but

only Owner always gets invoked

myController :
Bolt.EntityEventListener<iMySeriali
zer>

●​ Attached() // binds serializer
○​ Called (once?) after Control has

been assigned to this node
●​ BoltEntity.SimulateController()

○​ Generate a Command to send to
Owner

●​ BoltEntity.ExecuteCommand(...)

myController :
Bolt.EntityEventListener<iMySer
ializer>

●​ SimulateProxy()
○​ Removed from Bolt 0.4.x.x. See

notes on why and how to roll
your own

●​

5

http://doc.photonengine.com/en/bolt/current/in-depth/entity-ownership
http://doc.photonengine.com/en/bolt/current/in-depth/entity-ownership
http://doc.photonengine.com/en/bolt/current/in-depth/entity-ownership
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/StateReplication.md
http://wiki.boltengine.com/wiki/17/authoritative-server-faq
http://wiki.boltengine.com/wiki/17/authoritative-server-faq
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/BoltEntity.md
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/BoltEntity.md
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/BoltEntity.md
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/BoltEntity.md
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/BoltEntity.md
http://doc.photonengine.com/en/bolt/current/reference/simulateproxy
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/SimulateProxy.md

with ResetState=false. ○​ Called also for Owner, but only
Controller can get invoked with
ResetState=true.

Owner/Controller duality is a key source of confusion

Bolt supports p2p games where a Server can also be a Player. In that case, the Server node has a Player BoltEntity that is acting as both the Owner
and Controller for that Entity. There are a number of special shortcuts that Bolt makes in these cases that do not work in the general case. For
example, if a node is both Owner and Controller for an entity, then if you update State in your SimulateController() callback then Bolt will replicate
the State changes to other nodes only because that node happens to also be an Owner. Be very aware of this issue when coding and debugging
problems.

 Bolt Message types (Commands, States and Events)

The third important related, but different set of concepts are the Bolt Communication types of Commands, States and Events. These are the types of
messages that Bolt sends over the network connections between nodes.

Bolt Message Type: Commands States Events

Purpose of Message
type

Send intended state change (request)
from Controller to Owner.

The message flow also causes these
Commands to be sent (directly or back) to
the Controller’s ExecuteCommand()
callback - details below

Distribute actual state from Owner to
Controller and Proxies

Events are the Bolt equivalent of RPC -
except there is no return value (somewhat
like ‘rpc’ in uLink)

Global events are usually for things like
"meta information" around the game, starting
a round, game over, but can also be used to
communicate inventory for players, etc.

Entity events are for quick one-off things like
triggering a visual for "explosion" or "took
damage", etc.

TODO… more.. reference this.

How payload is defined In Unity Editor “Window / Bolt / Assets”

You MUST recompile Bolt Assets
(assembly) after creating/changing a
Command in order for the change to
have effect.

In Unity Editor “Window / Bolt / Assets”.

You MUST recompile Bolt Assets
(assembly) after creating/changing a
State in order for the change to have
effect.

In Unity Editor “Window / Bolt / Assets”.

Note that Bolt intentionally disallows passing
large structures like arrays or objects due to
abuse of this causing bandwidth issues.
Instead the model is to send events
describing the delta (i.e consume item),
rather than sending full refreshes of the
inventory list.

You MUST recompile Bolt Assets
(assembly) after creating/changing a
Event in order for the change to have
effect.

Destinations

See also
http://doc.photonengine.
com/en/bolt/current/in-d
epth/replication-modes

Commands are sent by the Controller to
the local Controller and to the Owner.

The Owner may also send the command
back to the Controller with the
resetState=true flag

As of 0.4.1.1, The destinations for the State
updates are defined when editing the State
the Bolt Editor windows. There are options
for the replication destination, such as
“replicate to everyone” (most useful typically
with non-auth case), “Don't replicate to
controller” (useful in authoritative case) etc.

Again, remember that State changes can
only be made from the Owner. There is a
hope of a special API to make this a little
more convenient..

Global: These are sent to all nodes - classes
that derive from
Bolt.GlobalEventListener()

Entity: These are sent to the nodes for this
entity - classes that derive from
Bolt.EntityBehaviour<IYourState>

Reliability

See
http://doc.photonengine.
com/en/bolt/current/in-d
epth/reliability

Commands are sent in a best-effort
manner, subject to network availability.
They are completely unreliable, however
they are sent with some redundancy,
meaning that each command will be sent
in several packets to give it a higher
chance of arriving.

If an entity Owner has not received a
Command from a Controller they can
use the MissingCommand() callback to
detect this and potentially create a default
action.

Command ordering however is reliable:
There may be lost Commands but the
ones that arrive will always be delivered in
the order they were queued with the
QueueInput() call.

For STATE changes, ordering is unreliable,
but eventual delivery of all changes is
reliable. Put another way, State updates are
not reliable in the way that everything
comes in the exact order you change it (aka
TCP style reliability), but they are reliable in
the way that all changes will eventually
make it across, even if they are lost on the
first attempt.

Global - global events can be either sent
“reliably” (default:
Bolt.ReliabilityModes.ReliableOrdere
d)
or “unreliably”
(Bolt.ReliabilityModes.Unreliable)

To an Entity - entity events are always sent
“unreliably”
(src)

For EVENTS, the definition of ‘reliable’
behavior is as follows:

Unreliable events means “It may not get
there, but everything that gets there will be in
the order it's sent (with any missed
events/calls obviously not getting there)

Reliable Events in "bolts" terms means = It
will always get there, in the exact order you
sent it.

Code example for send: public override void
SimulateController()
{
 PollKeys();

State changes will ONLY be replicated if
made on the node that is the Owner of the
Entity.

Global: (see as image) (src)
using (var evnt =
ChangeDoorState.Raise(Bolt.GlobalT

6

http://wiki.boltengine.com/wiki/12/events
http://doc.photonengine.com/en/bolt/current/in-depth/replication-modes
http://doc.photonengine.com/en/bolt/current/in-depth/replication-modes
http://doc.photonengine.com/en/bolt/current/in-depth/replication-modes
http://forum.boltengine.com/viewtopic.php?f=6&t=685&sid=1d4c8664ecd246e4998f4d2f8dde16cc
http://forum.boltengine.com/viewtopic.php?f=6&t=685&sid=1d4c8664ecd246e4998f4d2f8dde16cc
http://forum.boltengine.com/viewtopic.php?f=6&t=685&sid=1d4c8664ecd246e4998f4d2f8dde16cc
http://doc.photonengine.com/en/bolt/current/in-depth/reliability
http://doc.photonengine.com/en/bolt/current/in-depth/reliability
http://doc.photonengine.com/en/bolt/current/in-depth/reliability
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://forum.boltengine.com/viewtopic.php?f=9&t=387&p=2621&hilit=array+event#p2621
http://www.reddit.com/r/boltengine/wiki/index
http://i.imgur.com/91ezcj6.png
http://www.reddit.com/r/boltengine/wiki/index

 IPlayerCommandInput input;
 input = PlayerCommand.Create();
 input.forward = forward;
 input.backward = backward;
 input.left = left;
 input.right = right;
 input.jump = jump;
 input.Token = new TestToken();
 entity.QueueInput(input);
}

The State changes are typically made in
ExecuteCommand() when invoked on the
entity’s Owner.

●​ Changes to Transforms and
Animations should be made directly
on the entity.transform and
entity.animation.

●​ Changes to other properties are
done using code such as​
using(var mod =
state.Modify())​
{ ​
 mod.Speed = curSpeed;​
}

state.Modify() has been removed along
with using (var evnt)

argets.Everyone)) ​
{​
 evnt.isOpen = b; ​
}

// Example of Global unreliable
using (var ev =
LogEvent.Raise(Bolt.ReliabilityMod
es.Unreliable))
​

To Entity: (see as image) (src)
var casingEvnt =
SpawnCasing.Raise(entity);
 casingEvnt.cPosition =
weaponStatsScript.caseEjectionPoint
.position;
 casingEvnt.gunRef =
correctIndex;
casingEvnt.Send();
using (var evnt) has been removed

Code example for
receive:

public override void
ExecuteCommand(Bolt.Command c, bool
resetState)
{
 PlayerCommand cmd;
 cmd = (PlayerCommand) c;
 if (resetState)
 {
 // This can happen on Controller
 _motor.SetState(
 cmd.Result.position,
 cmd.Result.velocity,
 cmd.Result.isGrounded,
 cmd.Result.jumpFrames);
 }
 else
 {
 // move & save resulting state
 var result =
_motor.Move(cmd.Input.forward,
cmd.Input.backward, cmd.Input.left,
cmd.Input.right, cmd.Input.jump,
cmd.Input.yaw);

 // etc…
 }
 ...
}

There is also a flag
command.isFirstExecution() which is
important for trigger-type situations such
as ‘pushed jump’, ‘fired shot’ etc. In
general, Bolt rewinds and redoes
Commands multiple times in order to
support authoritative movement even in
the face of network lag/errors. The
isFirstExecution flag can be used in
ExecuteCommand() to isolate code that
you want to ensure will only be invoked
exactly once for each Command. (TODO
- need to confirm that means once on
Controller, and once on Owner)

Bolt will automatically apply States that
have been ‘attached’ (aka ‘linked’) to a
BoltEntity - this is how Animations and
Transforms must be applied. if they have
not been attached, then they will have no
effect.

You must to attach (link) your Transform,
Animator etc when your State is attached,
eg (in a script that inherits from
Bolt.EntityBehaviour<IMyState>):

public override void Attached ()
{

state.transform.SetTransforms(trans
form);

state.SetAnimator(GetComponentInChi
ldren<Animator>()); // Or wherever
your animator is
}

After that, if your State properties are all set
up properly in-editor, then all you have to do
is change the linked properties, and your
Transform, Animator (etc) should replicate
as intended.
(In-editor example of Mecanim properties in
state)

Then, to change other properties of the
State: In a script that inherits from:
Bolt.EntityBehaviour<IMyState>

state.Speed = curspeed;

Then, as long as the controller is the only
one running that bit of code (eg: wrap that in
a if (BoltNetwork.isOwner) clause),
Bolt will replicate that variable across the
network, and push it into that
object/animator/etc automatically, if your
State properties are set up as shown above.
(src, src)

It is also possible to have callbacks:

state.AddCallback("Speed",
OnSpeedChanged)
state.RemoveCallback("Speed",
OnSpeedChanged)

void OnSpeedChanged()
{
 // do stuff
}

(See additional notes in next section)

??? What about - TODO
IState.SetDynamic(prop, value)

Global: Make sure your script inherits from
Bolt.GlobalEventListener

Entity: Make sure your script inherits from
Bolt.EntityEventListener /
Bolt.EntityEventListener<StateNameGo
esHere> (These inherit from
Bolt.EntityBehaviour already)

Then, to receive an event:

public override void OnEvent

(ChangeDoorState evnt)
{
 if (evnt.isOpen == true)

SendMessage("PlayLinkedSound"
);

}

To access State from a global event, pass
the state in the event and use something like
evnt.entity.GetState<TState>().Prope
rty;
where TState is your state Type, for
example IPlayerState

More info http://doc.photonengine.com/en/bolt/current/
reference/state-replication

TODO: Add notes on read&pack

State callbacks

7

http://i.imgur.com/tbsryoO.png
http://www.reddit.com/r/boltengine/wiki/index
http://i.imgur.com/yWHrE1Z.png
http://i.imgur.com/yWHrE1Z.png
http://www.reddit.com/r/boltengine/wiki/index
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/StateReplication.md
http://doc.photonengine.com/en/bolt/current/reference/state-replication
http://doc.photonengine.com/en/bolt/current/reference/state-replication

One can define callbacks on arbitrary types in the State object:
state.AddCallback("myStateProperty", myCallbackFunction)

Note that triggers are a C# Delegate and don't require the state.AddCallback() method to be used. Instead you use the default adding to a delegate.
Like so:

state.myTrigger += myCallbackFunction

State Callbacks on arrays
You can set up a callback on an array in an array also, for example

state.AddCallback("InventorySlots[]", myCallbackFunction)

The callback will be invoked once for each property/element that changed. You can know the element and property that changed if you use the
extended callback which is

PropertyCallback(IState state, string propertyName, ArrayIndices indices);

or you can hook it to just a sub property by using "InventorySlots[].Quantity" as the first parameter of AddCallback().

The ‘indices’ parameter is plural because you can have nested arrays e.g. InventorySlots[].Enchants[] ...
Say that you hook a callback to InventorySlots[].Enchants[].TypeOfEnchant. When that changes, array indices will contain the index into
InventorySlots[] and then into Enchants[] so you know which property at what indices changed. (example here)

There is no way to collapse down these callbacks into one invocation.

Good opportunities to do the AddCallback() are:

●​ If you want the callback to fire on all nodes, then the Attached() callback on the entity would be a good place.
●​ If you want the callback to only fire on the Controller, then the ControlGained() callback on the entity would be a good place. It can’t go in

Attached() since we don’t know at Attached() time if the node is going to be a Controller.

See http://doc.photonengine.com/en/bolt/current/reference/state-callbacks for fuller explanations of State callbacks.

An additional but important ‘message type’: IProtocolToken during BoltNetwork.Instantiate()/Attached() and Connect()

See also http://doc.photonengine.com/en/bolt/current/reference/iprotocoltoken

IProtocolToken during Instantiation/Attached():
When Entities are instantiated, information can be passed from the Owner (who is making the instantiation request) to the other nodes. They will
receive the information in their Attached() callback. IProtocolToken is useful in Attached() since it has guaranteed delivery, whereas Commands
do not.

An example of a simple Token is as follows

public class MyTokenEntity : IProtocolToken

 {

 public ushort NetworkEntityId { get; private set; }

 public virtual void Read (UdpKit.UdpPacket packet)

 {

 NetworkEntityId = packet.ReadUShort ();

 }

 public virtual void Write (UdpKit.UdpPacket packet)

 {

 packet.WriteUShort (NetworkEntityId);

 }

 public MyTokenEntity ()

 {

 }

 public MyTokenEntity (ushort networkEntityId)

 {

 NetworkEntityId = networkEntityId;

 }

 public override string ToString()

 {

 return "NetworkEntityId: " + NetworkEntityId;

 }

 }

The Token has to be registered with Bolt before it can be used - for example in the BoltStarted() global callback..
BoltNetwork.RegisterTokenClass <MyTokenEntity>() on both the clients and server. An example of this is in the tutorial at
bolt_tutorial/scripts/Callbacks/TokenCallbacks.cs

When your code requests a Bolt Entity be instantiated using BoltNetwork.Instantiate() on the (now, implicitly) Owner of the entity, it can send in
the Token that it creates. On the other nodes, override Attached() with the version that takes an IProtocolToken and cast it to a MyTokenEntity

8

http://docs.unity3d.com/ScriptReference/EventSystems.EventTrigger.html
http://wiki.boltengine.com/wiki/16/state-callbacks
http://doc.photonengine.com/en/bolt/current/reference/state-callbacks
http://doc.photonengine.com/en/bolt/current/reference/iprotocoltoken
https://github.com/BoltEngine/bolt/blob/3a955e1841412692b88b2ed7c3fca2967d46750c/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/TokenCallbacks.cs

IProtocolToken during Connection request/allow

See http://doc.photonengine.com/en/bolt/current/in-depth/protocol-tokens, but the key steps are:

1.​ Set Bolt to require manual acceptance of connections: Use Window > Bolt engine > Settings. Then change "Accept Mode" to Manual.​

2.​ Define a user Token class that has the information you need​

3.​ At some point in your client connect code, have something like:​
 BoltLauncher.StartClient();​
 UserToken userToken = new UserToken (usernameString);​
 BoltNetwork.Connect (UdpEndPoint.Parse (serverIPAddressString), userToken);​

4.​ Some global callback code to (a) register tokens, and (b) accept and remember the connections:​
public class LocalUserToken {​
 public string username;​
 public string connectionTime;​
​
 public LocalUserToken (UserToken userToken, string connectionTime) {​
 this.username = userToken.username;​
 this.connectionTime = connectionTime;​
 }​
}​
​
[BoltGlobalBehaviour]​
public class TokenCallbacks : Bolt.GlobalEventListener ​
{​
 public override void BoltStarted () ​
 { ​
 // Note that this will be called on Client and Server​
 BoltNetwork.RegisterTokenClass<UserToken>();​
 }​
​
 public override void ConnectRequest(UdpKit.UdpEndPoint endPoint, IProtocolToken token) ​
 {​
 // Note that this is a Server-only callback, so will not be invoked on Client nodes.​
 UserToken userToken = (UserToken)token;​
​
 if (userToken.username.Equals("Dave")) {​
 // Don't let Dave back on the server​
 BoltNetwork.Refuse(endPoint);​
 } else {​
 // Accept the connection and add a userToken to the connection​
 BoltNetwork.Accept(endPoint, new LocalUserToken(userToken, System.DateTime.UtcNow.ToString()));​
 }​
 }​
}

How Commands become State changes

There are exactly two mechanisms that replicate changes to an entity’s State:

a.​ Your ExecuteCommand() callback can have some code that updates State
i.​ Note that the syntax has changed to use getters/setters as of Bolt 4.1.x.x. In the Bolt Tutorial this happens in the motor.Move()

methods which is invoked by ExecuteCommand().
ii.​ Bolt will only replicate State changes for an Entity when they change on the node that is the Owner for this entity.

b.​ For transforms and animations (only) there is a special binding of State to the BoltEntity’s parameters that you should typically set up in the your
Attached() callback - using state.SetTransform() and state.SetAnimator()

i.​ For this reason, there is no way to update fields of type Transform or Animation on State objects.

TODO - describe the Command and State’s ‘Replication' parameter and destinations choices (e.g. 'Everyone Including Controller' etc) -- update and
doc the 0.4.1.x behaviors.

3. Bolt Code and Objects: Classes, Singletons, Callbacks, GameObjects, Components and Scripts

In this section, we describe how the Bolt code is connected. We start from the global statics/singletons for working with the system, Callbacks for
plugging into key state changes, and then how Bolt uses/extends Unity GameObjects and Components/Scripts.

Common Bolt Super-Classes that your code will sub-class

In general, one should use Composition more than Inheritance, but there are areas where inheritance is the core way to connect into the Bolt system.
These common superclasses are as follows.

Super-Class Purpose and Usage

Bolt.EntityBehaviour<IYourState> The Base class for Unity behaviours

Bolt.EntityEventListener<IYourState> The Base class for Unity classes that want to access/hook Bolt methods for dealing with single Entities -
this is where most of your per-entity (npc, player, items etc) code will go in order to keep it modular.

Callbacks available when inheriting from Bolt.EntityEventListener<IYourState> include:

9

http://doc.photonengine.com/en/bolt/current/in-depth/protocol-tokens

 /// Invoked when the entity has been initialized, before Attached
 /// This is when we should link Bolt State to Game Object
 public virtual void Initialized() { }

 /// Invoked when Bolt is aware of this entity and all internal state
 /// has been setup. Called on Owner, Controller and Proxy
 public virtual void Attached() { }

 /// Invoked when this entity is removed from Bolts awareness
 public virtual void Detached() { }

 /// Invoked each simulation step on the owner
 public virtual void SimulateOwner() { }

 /// Invoked each simulation step on the controller
 // On Controller, this is when we create a Command to send to Owner
 public virtual void SimulateController() { }

 /// Invoked when you gain control of this entity
 public virtual void ControlGained() { }

 /// Invoked when you lost control of this entity
 public virtual void ControlLost() { }

 /// Invoked on the owner when a remote connection is controlling this
 //// entity but we have not received any command for the current
 //// simulation frame.
 public virtual void MissingCommand(Bolt.Command previous) { }

 /// Invoked on both the owner and controller to execute a command
 /// On Controller and Owner, apply the Command. Note that the Controller
 /// has more complex sub-cases to handle (resetState, firstCall etc)
 public virtual void ExecuteCommand(Bolt.Command command, bool resetState) { }

These are described in more detail in the ‘callbacks’ section below

Bolt.GlobalEventListener This is what you inherit from in order to get callbacks on GLOBAL (rather than per-entity) situations. A
good example is the SceneLoad-related callbacks. Note that it is also to get some callbacks that are
about entities.. ie. ControlOfEntityLost(entity) is the global equivalent of the per-entity ControlLost()
callback. This allows you to put more common behaviours into a common place in your code.

Note that this class has [...] attributes that are specified on the Callback functions to determine the
contexts in which it will be invoked: Server/Client, Specific Unity scenes, etc

Callbacks available when inheriting from Bolt.GlobalEventListener include:
 public override void BoltStartDone() and BoltStartBegin()
 public override void BoltShutdown() REPLACED in 0.4.3 with
BoltShutdownBegin(Bolt.AddCallback registerDoneCallback)
 public override void PortMappingChanged()
 public override void ControlOfEntityGained(BoltEntity a)
 public override void ControlOfEntityLost(BoltEntity a)
 public override void EntityAttached(BoltEntity entity)
 public override void EntityDetached(BoltEntity entity)
 public override void EntityReceived(BoltEntity entity)
 public override void OnEvent(myEvent evnt)
 public override void SceneLoadLocalDone(string map)
 public override void ConnectAttempt(endpoint)
 public override void ConnectFailed(endpoint)
 public override void ConnectRefused(endpoint)
 public override void Disconnected(connection)

 public override void SceneLoadLocalBegin(string map)
 public override void SceneLoadRemoteDone(BoltConnection c)
 public override void SceneLoadLocalDone(string map)

 public override void ZeusConnected(UdpKit.UdpEndPoint endpoint)
 public override void ZeusConnectFailed(UdpKit.UdpEndPoint endpoint)
 public override void ZeusDisconnected(UdpKit.UdpEndPoint endpoint)
 public override void ZeusNatProbeResult(UdpKit.NatFeatures features)
 public override void SessionListUpdated(Map<System.Guid, UdpSession>sessionList)
 public override void SessionConnectFailed(UdpSession session)

 // Server-only (???):
 public override void ConnectRequest(endpoint, token)
 public override void Connected(connection, token)
 public override void Disconnected(connection)

These are described in more detail in the following section

Bolt.BoltSingletonPrefab<PlayerCamera
>

TODO

Bolt.IProtocolToken See the separate section on IProtocolToken in this doc. This is used to pack/unpack some data structures that
aren’t the Bolt standard ones. A common example is login/password

It is possible to add multiple components and sub-objects to a Bolt Entity Game Object, for example then finding these using GetComponent
<IYourDesiredInterfaceOrTypeHere>(). Take that approach for adding behaviors when possible.

Bolt Callbacks

Global and Entity contexts for callbacks

10

Callbacks in this context means the methods in your class that Bolt will invoke to involve your code in Bolt’s network logic/communication processing.
There are two main categories of these callbacks - Global ones (e.g. scene-related etc) and entity ones (e.g. npc or item related):

Callback Type: Bolt Global Bolt Entity

Purpose of callback type Intended for activities that are related to the overall game. Intended for activities that are related specifically to an entity

Example use case Chat, Explosion, Cinematics Fire, Health changing, Jumping.

How to define In Unity Editor “Window / Bolt / Assets ” - then define Commands, States, Events, Structs to represent what will be
communicated over the network (and relative priority)

How to access Your class must inherit from Bolt.GlobalEventListener

Then, the Bolt callbacks are typically defined just as a
public void override callbackMethodName()

There are two ways to get Bolt to detect your callback
script and invoke the methods on it, the most basic one is
to just do the default 'Unity thing' and attach it to a game
object somewhere in a scene like you would with any
script.

The other way is to use the [BoltGlobalBehaviour]
attribute, if you specify this attribute on your callback
class, like below, Bolt will automatically find your class and
create an instance of it that lives with together with Bolt
and is destroyed when Bolt is shutdown.

States & Commands: Not applicable, since they are entity
concepts

Events: You have to inherit your class from
Bolt.GlobalEventListener and also override the
OnEvent() function.

Your class must inherit from
Bolt.EntityEventListener<IYourBoltStateForThisEnt
ity>

Then, the Bolt callbacks are typically defined just as a
public void override callbackMethodName()

Commands: See discussion above about
SimulateController() and ExecuteCommand()

States: See discussion above about ExecuteCommand() and
Attach().

Events: You have to inherit your class from
Bolt.EntityEventListener<IYourBoltStateForThisEnt
ity>
 and override the OnEvent() function.

Example of receiving
these callbacks

[BoltGlobalBehaviour(BoltNetworkModes.Server, "L01")]
public class PlayerCallbacks : Bolt.GlobalEventListener
{
 GameObject _playerCam;
 public override void SceneLoadLocalDone(string map)
 {
 // etc...
 }
}

Note that the [..] Attribute of
BoltGlobalBehaviour limits the context of when this
callback will be invoked. In this case Server, and only on
the level called “L01”.

TODO

Events: register a callback via AddCallback(“state”,
stateChanged)

If using triggers, register the callback using
state.yourTrigger += yourTriggerFunction;

More Info See also
http://doc.photonengine.com/en/bolt/current/in-depth/global-call
backs

Execution order and responsibilities of Bolt Callbacks

For diagrams,

●​ See the Unity docs on Unity callback execution order which includes a nice flowchart of the Unity-only callbacks.
●​ See the Bolt Update loop flowchart

Here is that information in more detail as a table - it lists the main Unity and Bolt callbacks and their sequencing and responsibilities:

Callback (in execution order) Caller Category Notes

BoltStarted() Bolt (Global) global-init This function is called on Client and Server (subject to the usual annotation filters
for Global Events). Things to do in this callback include:

●​ Registering Token classes - e.g. BoltNetwork.RegisterTokenClass
<MyTokenEntity>() (example)

Awake() Unity entity-init This function is always called before any Start functions and also just after a prefab
is instantiated. (If a GameObject is inactive during start up Awake() is not called
until it is made active, or a function in any script attached to it is called.)

Things to do in this callback include:

●​ Caching component reference lookups and other static data

OnEnable() Unity entity-init (only called if the Game Object is active): This function is called just after the object
is enabled. This happens when a MonoBehaviour instance is created, such as
when a level is loaded or a GameObject with the script component is instantiated.

Things to do in this callback include:

●​ (Usual Unity stuff)

11

http://msdn.microsoft.com/en-us/library/z0w1kczw.aspx
http://doc.photonengine.com/en/bolt/current/in-depth/global-callbacks
http://doc.photonengine.com/en/bolt/current/in-depth/global-callbacks
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://wiki.boltengine.com/wiki/30/in-depth-bolt-update-loop
https://github.com/BoltEngine/bolt/blob/3a955e1841412692b88b2ed7c3fca2967d46750c/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/TokenCallbacks.cs
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnEnable.html

Initialized() Bolt (Entity)

(all)

entity-init This happens before Attached(). It is not commonly required, but is in Bolt to
allow you to do sort of pre-attached initialization when Bolt is first aware of the
object but it's still not attached to the nodes and wired up. It can be useful when
adding Bolt to games built without network support, but not essential.

Attached() Bolt (Entity)

(all)

entity-init This is invoked when Bolt is aware of this entity and all internal state has been
setup. Attached() is called on the entity Owner before the entity is sent over the
network (so you can set initial state) and it is called on the non-Owner nodes when
the new network entity is instantiated on those nodes (so you can sync the initial
state back to your business layer) Things to do in this callback include:

●​ Process any entity information sent in an IProtocolToken by the Owner
via BoltNetwork.Instantiate(). IProtocolToken is useful on Attach()
for this kind of information. See the other section in this doc on
IProtocolToken for more info. This is a good way to passing names for
example.

●​ Bind any transforms to the State using state.SetTransform()
●​ Bind any animations to the State using state.SetAnimator()
●​ Set any animation weights using state.Animator.SetlayerWeight()
●​ Set any callbacks on state changes, e.g. state.OnFire += OnFire or

state.AddCallback("weapon", WeaponChanged)
●​ Set/Apply any other initial state (especially important on the Owner)

EntityAttached() Bolt (Global)

(all)

entity-init This is the Global counterpart of the entity.Attached() callback. It is invoked on the
node that is being Attached, so can be for any Entity role.

Note that the entity role has not been fully determined at this time, so
entity.hasControl should not be used/checked at this time (though
entity.isOwner should be valid since that was decided before Attached(). Code
that you want to initialize for Controllers is best placed in ControlGained().

Start() Unity entity-init Start() is called before the first frame update only if the script instance is enabled.
Things to do in this callback include:

●​ (Usual Unity stuff)
Start() is not a good place to do initializations for Bolt. Use Awake() instead

SceneLoadLocalBegin() Bolt (Global) scene-load This callback is called when a local scene load begins. This callback can be
invoked on Client or Server - see the ‘extra notes on scene loading’ section below
for more context. Things to do in this callback include:

●​ Show a Loading screen/popup]

SceneLoadLocalDone() Bolt (Global) scene-load This callback is called once a local scene load is complete. This callback can be
invoked on Client or Server - see the ‘extra notes on scene loading’ section below
for more context. Things to do in this callback include:

●​ Stop showing a loading screen/popup
●​ Instantiate Game UI and Camera for the player (as in PlayerCallbacks.cs)
●​ Instantiate any entities for this scene that this node wants to be Owner for.

It is very important that you do not attach this behavior to any GameObject in any of
your scenes.

SceneLoadRemoteDone() Bolt (Global) scene-load This callback is called once a remote scene load is complete. A Client will only
receive this once - saying that the Server has completed loading the Scene. A
Server will get this once for each Client connection. Since
BoltNetwork.LoadScene(mapName) can only be invoked on the Server, then this
SceneLoadRemoteDone() will be called on the the remote (client) node at the end
on the connection that is being passed in has loaded the scene.
Things to do in this callback include:

●​ Instantiate any per-connection entities for this scene that this node wants to
be Owner for. The most common case is the Player entity, in the case of
Authoritative Server for the player.

It is very important that you do not attach this behavior to any GameObject in any of
your scenes.

ControlGained() Bolt (Entity)

Controller

initializations This callback is called on the Controller node once Control has been assigned for
this entity by the Owner using TakeControl() or AssignControl(). It is invoked
on the node that now has Control for this entity. Things to do in this callback include:

●​ Add state callbacks to do stuff for the player based on state changes (See
example in PlayerSfx.cs)

ControlOfEntityGained
 (BoltEntity a)

Bolt (Global)

initializations This is the Global counterpart of the entity.ControlGained() callback. It is invoked
on the node that now is the Control for this entity. Things to do in this callback
include:

●​ For player.. add audio listener, set camera callbacks/target (as done in
PlayerCallbacks.cs for example)

Note that the Bolt tutorial as of 0.4.1.5 has some code in PlayerCallbacks.cs
using this callback that would probably be cleaner to put in ControlGained() in
PlayerController.cs

12

http://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://github.com/BoltEngine/bolt/blob/4f7158e8bc5e13a624a7c8b543dcfb851e4da17a/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/PlayerCallbacks.cs
http://wiki.boltengine.com/wiki/17/authoritative-server-faq
https://github.com/BoltEngine/bolt/blob/02728d5a8bf51202ebe0ef3868d92b3d5468883e/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Player/PlayerSfx.cs
https://github.com/BoltEngine/bolt/blob/4f7158e8bc5e13a624a7c8b543dcfb851e4da17a/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/PlayerCallbacks.cs

ControlLost() Bolt (Entity)

Controller

teardowns This callback is called once Control has been revoked for this entity by the Owner.
It is invoked on the node that is losing Control for this entity. Things to do in this
callback include:

●​ Remove state callbacks to do stuff for human player based on state changes
(See example in PlayerSfx.cs)

ControlOfEntityLost
 (BoltEntity a)

Bolt (Global) teardowns This is the Global counterpart of the entity.ControlLost() callback. It is invoked on
the node that is losing Control for this entity.

Update() Unity game loop The Update() callback is called once per frame. It is the main workhorse function
for frame updates.

Note that Input typically updates in Update() - see the tutorial PlayerController.cs
for an example of recording input state in the Object, then applying it in Bolt’s
SimulateController() callback via a Command.

Things to do in this callback include:

●​ For a Player-type entity, get input, and store the input intent from the user
locally in this script

FixedUpdate() Unity game loop FixedUpdate() is often called more frequently than Update(). It can be called
multiple times per frame, if the frame rate is low and it may not be called between
frames at all if the frame rate is high. All physics calculations and updates occur
immediately after FixedUpdate. When applying movement calculations inside
FixedUpdate, you do not need to multiply your values by Time.deltaTime. This is
because FixedUpdate is called on a reliable timer, independent of the frame
rate.The FixedUpdate() callback does not happen every frame.

Note that Bolt runs (and hence invokes many of it’s callbacks) during Unity’s
FixedUpdate() - this has different frequency of calling to Update() so your code
should not assume 1:1 invocation of Update() then SimulateController() for
example.

Things to do in this callback include:

●​ Entity: Directly update transforms/animations for server-time-positioned
objects (e.g. Elevator.cs in the bolt tutorial)

●​ Global: Invoke a player spawn (e.g ServerCallbacks.cs)

SimulateOwner() Bolt (Entity)

Owner

game loop Called by Bolt if this node is the Owner for this entity. Things to do in this callback
include:

●​ This is a good place to directly change State on the Owner. (e.g.
PlayerController.cs uses this to do slow-heal of the Player)

Note: SimulateOwner() and SimulateController() execute on a fixed
frequency defined in Window/Bolt Engine/Settings.

SimulateController() Bolt (Entity)

Controller

game loop Called by Bolt if this node is the Controller for this entity. Things to do in this
callback include:

●​ For a Player-type entity, use the player input that was stashed in Update()
to build a Command that will then be queued for ExecuteCommand().

Note: SimulateOwner() and SimulateController() execute on a fixed
frequency defined in Window/Bolt Engine/Settings.

MissingCommand() Bolt (Entity)

Owner

game loop This is called by Bolt on the entity Owner. The purpose is to let the Owner inject
replacement Commands in case a Command hasn’t been received in time by the
Owner from a Controller.
In this callback, the Owner would supply a "null command" and queue up in the
same way SimulateController() does.
Note that as of Bolt 0.4.1.5 the Bolt tutorial does not use this (but it should).

ExecuteCommand() Bolt (Entity)

Owner +
Controller

game loop Called by Bolt if this node is the Owner or Controller for this entity. Things to do in
this callback include:

●​ invoke a Motor to update state based on the requested input (or result if
resetState==true).

●​ Store the resultant state in Command.result (if resetState==false and
entity.isOwner==false).

Note that proxies never get called with ExecuteCommand() so if you want to show
effects from entities such as explosions/damage/shots, then you need another way
to inform the proxy that this has occurred (i.e. an Entity event or a callback on a
state parameter changing.

LateUpdate() Unity game loop LateUpdate() is called once per frame, after Update() has finished. Any
calculations that are performed in Update() will have completed when
LateUpdate() begins.

Things to do in this callback include:

●​ A common use for LateUpdate() would be a following third-person camera.
If you make your character move and turn inside Update(), you can perform
all camera movement and rotation calculations in LateUpdate(). This will

13

https://github.com/BoltEngine/bolt/blob/02728d5a8bf51202ebe0ef3868d92b3d5468883e/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Player/PlayerSfx.cs
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://github.com/BoltEngine/bolt/blob/393398325c41af15dbdab9fdf06f40a84da23cd7/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Environment/Elevator.cs
https://github.com/BoltEngine/bolt/blob/25f727451b27c138999ebb3d5c605a821f444dd5/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/ServerCallbacks.cs
https://github.com/BoltEngine/bolt/blob/07a1d7b5ee2fd65cdde353d041300e1da1f227a9/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Player/PlayerController.cs
https://github.com/BoltEngine/bolt/blob/07a1d7b5ee2fd65cdde353d041300e1da1f227a9/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Player/PlayerController.cs
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html

ensure that the character has moved completely before the camera tracks
its position.

OnEvent() Bolt (Global)
Bolt (Entity)

game loop This is used for receiving custom events that you define using Bolt ‘Event’ assets,
and that you send using BoltNetwork.Raise() for global events, or
entity.Raise() for entity events. TODO: Confirm where this fits in sequence of
Bolt calls. Entity unreliable, global always reliable

OnDestroy() Unity teardowns This function is called after all frame updates for the last frame of the object’s
existence (the object might be destroyed in response to Object.Destroy or at the
closure of a scene).

Detached() Bolt (Entity)

All

teardowns Invoked when this entity is removed from Bolts awareness. It is invoked on all entity
roles (Controller, Owner, Proxy). Things to do in this callback include:

●​ Updating minimap/hud etc that some entity is no longer around
●​ Disconnect message about other player

EntityDetached() Bolt (Global) teardowns This is the Global counterpart of the entity.Detached() callback. It is invoked on all
entity roles (Controller, Owner, Proxy).

PortMappingChanged() Bolt (Global) ? TODO. Seems related to NAT

BoltShutdown() Bolt (Global) teardowns This function is called when/after Bolt is shutdown.

Note that the above table did not include the ConnectAttempt()/ConnectFailed()/ConnectRefused()/Disconnected() and
ConnectRequest(endpoint, token)/Connected(connection, token)/Disconnected(connection) callbacks.
TODO - Connection callbacks

Extra notes on Scene Loading callbacks: SceneLoadLocalDone() and SceneLoadRemoteDone()

Only a Server can call BoltNetwork.LoadScene(). The sequence of callbacks after this is as follows:

●​ The Server will receive the SceneLoadLocalDone() callback when it is locally (i.e. on the Server) done,
●​ Each Client will receive the SceneLoadLocalDone() callback when the scene has been loaded on that client node
●​ The Server will receive the SceneLoadRemoteDone(connection) callback when the scene has been loaded on each client node
●​ Each Client will then receive the SceneLoadRemoteDone(connection) callback after the Server has processed it’s SceneLoadLocalDone()

In addition, for a given node, it is guaranteed to execute in the order of: 1) SceneLoadLocalDone and then 2) SceneLoadRemoteDone(connection)
EVEN if the remote finishes before you are locally done (because knowing that the remote is done without knowing that you yourself is done, is mostly
useless).

A Client will only ever see one SceneLoadRemoteDone(connection) callback for a given LoadScene() cycle - i.e. the server's one. It doesn't see this
for all the other client nodes

Note that in the ServerCallbacks.cs script in the Bolt tutorial, this code is guarded by a decorator that limits the invocation to only Server side:
 [BoltGlobalBehaviour(BoltNetworkModes.Server, "Level1")]

..so that the Player characters are only Instantiated from the Server - hence the Players are all Owned by the the Server and so Players are
‘authoritative server’ entities. The SceneLoadRemoteDone() callback allows the Server to instantiate a Player per connection, once that remote scene
has been loaded.

Bolt Singletons & statics - always there when you need them

Class to use General purposes Cool things you can use or call with it

BoltNetwork ●​ Instantiate/Destroy Bolt Entities
●​ Get local/remote frame stats
●​ Accept/reject connections (Server)

BoltNetwork.Connect()
BoltNetwork.Accept(endpoint)
BoltNetwork.RegisterTokenClass<type>()

BoltNetwork.Instantiate(BoltPrefabs.YourPrefabsID, …)
or BoltNetwork.Instantiate(prefabGameObject, …)

BoltNetwork.Destroy(entity.gameObject)

BoltNetwork.isClient
BoltNetwork.isServer

BoltNetwork.serverTime
BoltNetwork.serverFrame
BoltNetwork.frame
BoltNetwork.frameDeltaTime
BoltNetwork.framesPerSecond

BoltNetwork.LoadScene()

BoltNetwork.scopeMode

using (var hits = BoltNetwork.RaycastAll(new Ray(pos, look *
Vector3.forward), cmd.ServerFrame)) { … }

BoltNetworkInternal ●​ BoltLauncher.StartServer()
uses these to initialize a Server

You probably want to leave BoltNetworkInternal alone until you really
need a custom launcher

14

http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnDestroy.html
https://github.com/BoltEngine/bolt/blob/25f727451b27c138999ebb3d5c605a821f444dd5/src/bolt.unity.tutorial/Assets/bolt_tutorial/scripts/Callbacks/ServerCallbacks.cs

PlayerCamera ●​ Create a Player Camera PlayerCamera.Instantiate()

The camera Prefab Asset must be named “PlayerCamera” and be placed in
a folder named "Resources" so it can be found using Unity’s
Resources.Load()

BoltPrefabs ●​ A convenient way to reference (for
Invocation) a Bolt Entity Prefab by
name without it being in a
Resources/ folder.

BoltNetwork.Instantiate(BoltPrefabs.YourPrefabsID, …)

BoltLauncher ●​ Startup (Client and Server)
●​ Disconnect (Client and Server)

BoltLauncher.StartServer();
BoltLauncher.StartClient();
BoltLauncher.Shutdown();

TODO more…?

Bolt GameObjects - Prefabs, Parenting and more

Making Bolt Entities as Unity Prefabs

For GameObjects to have replicated state (and other goodness) in Bolt, there must be a BoltEntity component attached to the Game Object. Also, it is
almost always the case that these Bolt Entity Game Objects are Unity Prefabs. fholm has said that it’s possible to use Bolt entity without prefabs (and
for example he has done that in the game he worked on), but it’s not normal (and he implied that ‘here be dragons’). So unless you are a BoltEngine
expert, keep life simple by assuming BoltEntity is always used on Unity Prefabs, and instantiated using BoltNetwork.Instantiate().

When defining these Bolt Entity Prefabs:

1.​ Make your Unity prefab, view it in the inspector
2.​ Add the Bolt Entity Component - typically to the root Game Object in your prefab
3.​ Use Unity Menu -> Assets -> Bolt Engine -> Rebuild Prefab Database to correct the Prefab ID
4.​ Assign a serializer to the Bolt Entity Component (this will define which parameters Bolt will replicate for this Bolt Entity):

a.​ Define a new Bolt State using Unity WIndows -> Bolt Engine -> Bolt Assets -> (right click) -> new State
b.​ Save the State
c.​ Use Unity Menu -> Assets -> Bolt Engine -> Compile Assembly
d.​ Now (finally) you can assign the serializer in the Bolt Entity component of your Prefab

5.​ Make a note to remember to write an Attach() method as described above in the State section. Look for the section ‘Code example for receive’
which gives examples of the Attach() methods.

Parenting, deparenting and reparenting BoltEntities (TODO)

Unity has had a long-awaited mystical feature called Nested prefabs, which still hasn’t shipped, many years after first being mentioned. However, Bolt
does have a way to dynamically reparent Entities using entity.SetParent(anotherBoltEntity)

●​ Parenting of Bolt Entities:
○​ fholm says that reparenting still has some issues as of 0.4.1.x. Need to investigate what works, what doesn’t.

●​ Reparenting of Bolt Entities:
○​ This can be done via yourBoltEntity.SetParent(anotherBoltEntity)
○​ Only the owner or a controller with local prediction can reparent an Entity

●​ De-parenting of Bolt Entities:
○​ There was an issue in 0.4.0.19 that prevented deparenting. (TODO - check this is fixed)

Don’t make BoltEntity’s GameObject inactive

Don't set GameObjects with a Bolt Entity on them, or on a child of them, to inactive (make sure the BoltEntity is on a parent GameObject that doesn't
get set to inactive).

If you disable the GameObject the BoltEntity script is on, then Bolt will destroy the BoltEntity.

if you want to inhibit certain functionality for a GameObject/Entity, options include:

●​ To temporarily stop replication traffic in Bolt, use entity.Freeze() (See
http://doc.photonengine.com/en/bolt/current/in-depth/freeze-idle-setscope)

●​ To disable physics (for example for rigidbodies that are not currently interesting), set the GameObject to be InverseKinematic (Example in
Recipe 001)

●​ To disable everything , the best approach is to have the GameObject you want to disable be a child of the GameObject with the BoltEntity.

Setting the UniqueId for a Bolt Entity

The Owner of the Bolt Entity is the only one that can set the Unique ID.
The Unique ID has to be manually set with yourBoltEntity.SetUniqueId(Bolt.UniqueId.New());
// TODO - Validate that this is still the case in 0.4.0.22 and 0.4.1.x

Typical naming conventions and responsibilities for your Bolt-related scripts

These are the conventions you see in the Bolt Tutorial, and are used in most descriptions within the Bolt community. They approximately map to wider
Unity and Game industry use with networked game systems, but not exactly..!

Area Naming convention Typical Responsibilities

Callbacks server_callbacks.cs TODO - scene loads etc

15

http://docs.unity3d.com/ScriptReference/Resources.html
https://github.com/fholm
http://store.steampowered.com/agecheck/app/242760/
http://forum.boltengine.com/viewtopic.php?f=6&t=588
http://doc.photonengine.com/en/bolt/current/in-depth/freeze-idle-setscope

Callbacks player_callbacks.cs This is where Game UI, Cameras, Audio Listeners etc are instantiated. For example:

[BoltGlobalBehaviour("Level1")]
public class PlayerCallbacks : Bolt.GlobalEventListener {
 public override void SceneLoadLocalDone(string map) {
 // ui
 GameUI.Instantiate();

 // camera
 PlayerCamera.Instantiate();
 }

 public override void ControlOfEntityGained(BoltEntity arg, Bolt.IProtocolToken token)
{
 BoltLog.Info("ControlGained-Token: {0}", token);

 // add audio listener to our character
 arg.gameObject.AddComponent<AudioListener>();

 // set camera callbacks
 PlayerCamera.instance.getAiming = () => arg.GetState<IPlayerState>().Aiming;
 PlayerCamera.instance.getHealth = () => arg.GetState<IPlayerState>().health;
 PlayerCamera.instance.getPitch = () => arg.GetState<IPlayerState>().pitch;

 // set camera target
 PlayerCamera.instance.SetTarget(arg);
 }
}

Bolt Entity yourEntityName_Controller.cs *** ALERT!! BEWARE OF CONFUSING NAMING COLLISION HERE ***
This does not mean Controller in the ‘bolt’ sense. It means controller in the wider sense
of ‘code that controls the Entities behavior’. Some of this code will be executed on a Bolt
Controller / Owner / Proxy - see the definitions and tables above to understand exactly
which ones.

This typically subclasses Bolt.EntityEventListener<IPlayerState> which in turn
subclasses BoltEntity. See the notes on BoltEntity above for descriptions; the common
callbacks to implement are:
 public virtual void Initialized() { }
 public virtual void Attached() { }
 public virtual void Detached() { }
 public virtual void SimulateController() { }
 public virtual void ControlGained() { }
 public virtual void ControlLost() { }
 public virtual void ExecuteCommand(Bolt.Command command, bool resetState) { }

Bolt Entity yourEntityName_Motor.cs Typically used by the _Controller class to do the dirty work of validating & moving a GO.
Typically used methods:

Move(input) // Returns a result struct with new position (etc) based on input.
SetState(result) // Applies the result structure to the GameObject

Remember that State changes on an entity are only replicated out when changed on the
Owner node for that entity.

 TODO.. more?

4. A BoltEngine Cookbook

These recipes begin with the Bolt Tutorial

Recipe #000: Start with a stable base game (the tutorial) and check Bolt is behaving

This is important.. if you have a ‘slightly misbehaving’ install of Bolt then you will get super-confused very quickly. So always baseline with the Bolt
Tutorial as described here to make sure it is working as expected before trying to add/change entities and code.

I have found the easiest way to make sure that the version of Bolt matches the version of the tutorial is to extract the tutorial from the source package.
Not all bolt releases come with an updated tutorial. ​

GET A MAC/PC and UNITY AND OPEN THE TUTORIAL

000-02. In my tests, I started with a Mac running Unity 4.6 Pro (Pro isn’t required, but it’s what i used). The same approach should work on Windows -
just change / to \ in these instructions (and a few other things).
000-03. Copy the bolt.unity.tutorial subfolder to a new folder and rename it bolt.tutorial.22.safecopy_001. This is the start point of your project
000-04. Open the bolt.tutorial.22.safecopy_001 folder in Unity as a Project

INSTALL BOLT. CHECK IT WORKS - SHOWS ASSETS ETC

000-05. With the project open in Unity, Double-click the Bolt_Beta_v04022_Installer.unitypackage file from Mac Finder to install Bolt. Select All, then
Import
000-06. Closed Unity, then restarted it. It should opened at the same project as before.
000-07. Use the Edit menu to select INSTALL BOLT.
000-08. Quit Unity again and restart it. (Bolt can be funny sometimes if you miss this step, idk why. Just do it)
000-09.Use the Windows -> Bolt Engine -> ... menus to display Bolt stuff (assets, scenes, settings etc). I noted that I could see the tutorial assets for
example in the Bolt Assets window.

16

MAKE THE TUTORIAL WORK

000-10. In Unity, create a new scene, call it MainMenu, save it.
000-11. In the Unity Project window, drag the bolt/scripts/BoltInit.cs script to the Main Camera in the Hierarchy window for this scene.
000-12. Save the scene again (e.g command-S)
000-13. File -> Build Settings, select "Add Current". Level1.unity was already there. I dragged them so that MainMenu was first (index 0). They do both
need to be there, in that order (MainMenu:0, Level1:1)
000-14. Click "Player Settings" button.. "Full screen" off; Width=640, Height=360; "Run in background" = true; "Display Resolution Dialog" = Disabled.
Now close the Build Settings window. I save for good luck again at this point (Unity.. File -> Save project)

VALIDATE THAT TUTORIAL LEVEL1 WORKS

000-15. Show the "Bolt Scenes" window (Window -> Bolt Engine -> Scenes)
000-16. Click Level1 "Debug Start"​

At this point you can see the two players, run around and kill another player (right click aim, left-click shoot). Players should respawn after about 30
seconds.

Recipe #001: Creating a simple physics-controlled ball

CREATE A VERY SIMPLE NEW PREFAB FOR USE WITH BOLT REPLICATION

001-01. Open Scene "Level1"
001-02. With nothing selected, Go to Unity menu -> Game Object -> 3d -> Sphere
001-03. On the Sphere's transform, set X,Y,Z and rotations = 0. Set X,Y,Z scale = 2.
001-04. In the Unity Project window, create a new folder "recipes" at the root - this will be a peer of bolt, bolt_tutorial etc.
001-05. Select the /recipes asset folder in the Project window. It should show the folder is empty.
001-06. Drag the Sphere from the Hierarchy window to the Project window (into the /recipes folder)
001-07. Delete the Sphere from the Hierarchy window.
001-08. In the Assets->recipes folder, rename the sphere to be called TheWhiteSphere
001-09. Add a component "Bolt Entity" to TheWhiteSphere. There will be errors. it's ok..
001-10. Unity Menu: Assets -> Bolt Engine -> Update Prefab Database (this gets rid of the no id errors)
001-11. Unity Menu: Assets -> Bolt Engine -> Generate Scene Object Ids (NO IDEA IF STEP 31 WAS REQUIRED...)
001-12. Unity Menu: Assets -> Bolt Engine -> Compile assembly
001-13. Unity Window: Bolt Assets -> States... Right-click, create new State
001-14. Name it "SphereState". Change the comment to be "This is used for TheWhiteSphere"
001-15. Inheritance=Is Concrete. Bandwidth=512 .Parent: none. 16 properties/packet (all defaults)
001-16. Import Mecanim Parameters = none. (accept default)
001-17. Click the "New Property" button. Call it "Transform" and it is of type "Transform"
001-18. Set parameters.. Smoothing Algorithm = Interpolated. Axes=Position: XYZ; Rotation: XYZ. DOn't set any of the sub-parameters
001-19. Unity Menu: Assets -> Bolt Engine -> Compile Assembly.
001-20. Unity Window: Project -> recipes. Click on TheWhiteSphere to allow it to be edited
001-21. In the Inspector window, see the Serializer.. Select ISphereState as the serializer

ADD RIGIDBODY PHYSICS TO THE SPHERE AND SET IT UP FOR Transform REPLICATION

001-22. Unity Window: Project -> recipes. Click on TheWhiteSphere to allow it to be edited in the Inspector
001-23. Add Component -> Rigidbody
001-24. Unity Window: Project -> folder /bolt_tutorial/scripts/Environment
001-25. Right-click mouse to create 'TheWhiteSphere.cs'
001-26. Unity Window: Project -> Double-click TheWhiteSphere.cs in order to bring it up in the MonoDevelop editor (and ensure it is part of the C#
project). There should be empty functions for Start() and Update(). Update it as follows so that only the server has the rigibody behaviors:

using UnityEngine;

using System.Collections;

public class TheWhiteSphere : MonoBehaviour {

​ // Use this for initialization

​ void Start () {

​ }

​

​ // Update is called once per frame

​ void Update () {

​ ​ if (BoltNetwork.isServer == false)

​ ​ {

​ ​ ​ // Not sure why I have to do this in Update() rather than Start().. TODO: investigate more.

​ ​ ​ Rigidbody rb = this.GetComponent<Rigidbody>();

​ ​ ​ rb.isKinematic = true;

​ ​ ​ rb.useGravity = false;

​ ​ }

​ }

}

17

001-27. Now, we need to make sure the transform is applied during Attach(). Select the TheWhiteSphere prefab and click "Add Component". Select
"New Script" and call it "TheWhiteSphereController.cs". Edit the file in Monodevelop as follows:

using UnityEngine;

using System.Collections;

public class TheWhiteSphereController : Bolt.EntityEventListener<ISphereState> {

​ public override void Attached() {

​ ​ state.Transform.SetTransforms(transform);

​ }

}

001-28. Unity Window: Project -> recipes -> TheWhiteSphere. In the Inspector, click "Add Component” and type TheWhiteSphere.cs. Click enter to
bind that script to the prefab.

CAUSE THE SERVER TO SPAWN THE SPHERE DYNAMICALLY

001-29. Open the script bolt_tutorial\scripts\Callbacks\ServerCallbacks.cs
001-30. Change the method SceneLoadLocalDone() from

 public override void SceneLoadLocalDone(string map) { // ** THIS IS THE CODE YOU ARE REPLACING **
 if (Player.serverIsPlaying)

 Player.serverPlayer.InstantiateEntity();

 }

to be:

 private void instantiateTheWhiteSphere()

 {

 BoltEntity tws = BoltNetwork.Instantiate(BoltPrefabs.TheWhiteSphere, new TestToken(),

 new Vector3(0, 15f, 0), Quaternion.identity);

 }

 public override void SceneLoadLocalDone(string map) { // ** THIS IS THE NEW CODE **

 if (Player.serverIsPlaying)

 Player.serverPlayer.InstantiateEntity();

 if (BoltNetwork.isServer)

 instantiateTheWhiteSphere();​

 }

001-31. (for good measure) Unity Menu: Assets -> Bolt Engine -> Compile assembly
001-32. Unity Window: Bolt Scenes -> Level1 -> Debug Start
001-33. Play now in both windows to confirm that both server and client can see and shoot at TheWhiteSphere. It is near the elevator, in the sky.

NOW, also, each player can push the sphere. Each player sees the sphere in the same place

Recipe #002: Creating a simple NPC that can take damage and die (TODO)

TODO
Pseudo: Make property on Enemy State for Health, copy over ApplyDamage function to NPCController script, on update check if health is below 1, if
below 1 trigger death animation and entity.DestroyDelayed(8);

Recipe #003: Creating a drop item from a dying NPC (TODO)

TODO
Pseudo:
ServerCallbacks.cs
 public static void instantiateItem(Vector3 location)
 {
 BoltNetwork.Instantiate(BoltPrefabs.Item, new TestToken(), location, Quaternion.identity);
 }

NPCController
if(dead == true)
​ ServerCallbacks.instantiateItem(entity.transform.position);

Recipe #004: Creating stuff that floats around with the player (like drones) (TODO)

TODO
Pseudo:

FlyerController.cs
public override void Attached()
 {
 state.Position.SetTransforms(transform);
 }

18

 void Update()
 {

if (entity.isOwner)
 {
​ //fly around
​ }
 }

Recipe #005: A NPC with persistent state in a database (TODO)

TODO - this is just rough notes so far
In this recipe, we are using the Meteor stack since it provides a very efficient state synchronization protocol that we can leverage to efficiently sync the
server with. Meteor is based on nodejs and MongoDB, and has a very similar conceptual model to Bolt, so it is a natural combination to use with Bolt
(my 2c anyway), though is also ‘bleeding edge’.

If just using a normal REST approach (not DDP, but quick-and-dirty to get started):

●​ Accessing the Database from a Unity/Bolt server: https://github.com/andyburke/UnityHTTP
●​ Server: meteor.com / https://github.com/awatson1978/rest-api /

Or, looking at more advanced meteor-specific DDP protocol for pub/sub between the Bolt server and Meteor:

●​ https://github.com/hiddenswitch/Meteor-Unity
●​ https://groups.google.com/forum/#!topic/meteor-talk/DcAZzwvo8EE
●​ http://fastchicken.co.nz/2014/02/11/making-xamarin-ios-talk-to-meteor/

Or, to be more conservative (Fholm’s recommendation) - use protocol buffers and a SQL-like DB ...fholm’s said.. (TODO - write up notes)

●​ “I would probably use a normal sql db - its what most of the big guys are using, most MMOs/hearthstone, etc.”
●​ “I would probably have an intermediate database cache server that i would talk to over a binary tcp/ip protocol. Basically i would not have unity

talk directly to a DB, I would have a binary protocol based on protocol buffers so that Unity never has to know which data store, etc. you are
using”

●​ Unity/C# Protobuf options.. Marc Gravell’s protobuf-net
●​ https://code.google.com/p/protobuf-net/wiki/GettingStarted
●​ http://purdyjotut.blogspot.com/2013/10/using-protobuf-in-unity3d.html)
●​ http://www.codeproject.com/Articles/642677/Protobuf-net-the-unofficial-manual
●​ This is also what fholm has embedded in Bolt for serialization…

■​ or.. https://code.google.com/p/protobuf-csharp-port/
●​ Best instructions to follow seem to be:

https://github.com/yueyoum/unity3d-scripts/tree/master/networking-with-protobuf-example
●​ Example of socket writes to tcp-based server:

https://github.com/yueyoum/unity3d-scripts/blob/master/networking-with-protobuf-example/NetWorking.cs ***
■​ or.. https://silentorbit.com/protobuf/ (No)

●​ Github at https://github.com/hultqvist/ProtoBuf ****
●​ This is all codegen on the Unity side - no libraries

○​ :(However.. .it uses System.Collections.Concurrent (for ConcurrentBag) which isn’t in Unity, so it won’t work
without modification to the ConcurrentBagStack class in ProtocolParser.cs

●​ explanatory article: http://dotdotnet.blogspot.com/2014/08/protobuf-in-unity3d.html
■​ or.. https://github.com/pomelonode/pomelo-protobuf (No)

●​ This one encodes the protocol in JSON and generates client-side and server-side javascript to communicate
●​

●​ “it doesn’t have to be protobuffers, i have written my own little protocol message system for the master server. It's also why I would not use a
‘normal db’ … so i can push changes from the db to the server, that is”

Building a Go-based intermediate ‘database server’ to use protocol buffers

(mac example.. sorry folks. I used some hints from here but simplified it a lot. Also, I’m using CSV files as the ‘database’ to keep it simple)

005-00. Install Go using the instructions for your platform at https://golang.org/doc/install. I used go1.4.darwin-amd64-osx10.8.pkg for my Mac
005-01. Decide where to start the project.. I’ll choose ~/Code/boltrepo/
005-02. Create a folder structure to start coding the GO-based server in: ~/Code/boltrepo/servers/intermediate/golang
005-03. cd ~/Code/boltrepo/servers/intermediate/golang
005-04. Create a quick’n’dirty script that we’ll use to set the go path and root for this project: create a file ‘sourceme’ as follows:

20:13:04 ~/Code/boltrepo/servers/intermediate/golang$ more sourceme

export GOPATH=`pwd`

echo GOPATH now = $GOPATH

export PATH=$PATH:$GOPATH/bin

005-05. ‘Source’ this file to set the required environment variables for Go development in this location:

20:17:02 ~/Code/boltrepo/servers/intermediate/golang$. sourceme

GOPATH now = /Users/dgolds/Code/boltrepo/servers/intermediate/golang

005-06. Make the three main subfolders used at the root of a go project:

20:19:12 ~/Code/boltrepo/servers/intermediate/golang$ mkdir bin

19

https://github.com/meteor/meteor/blob/devel/packages/ddp/DDP.md
https://github.com/andyburke/UnityHTTP
https://github.com/awatson1978/rest-api
https://meteorhacks.com/introduction-to-ddp.html
https://github.com/hiddenswitch/Meteor-Unity
https://groups.google.com/forum/#!topic/meteor-talk/DcAZzwvo8EE
http://fastchicken.co.nz/2014/02/11/making-xamarin-ios-talk-to-meteor/
https://code.google.com/p/protobuf-net/wiki/GettingStarted
http://purdyjotut.blogspot.com/2013/10/using-protobuf-in-unity3d.html
http://www.codeproject.com/Articles/642677/Protobuf-net-the-unofficial-manual
https://code.google.com/p/protobuf-csharp-port/
https://github.com/yueyoum/unity3d-scripts/tree/master/networking-with-protobuf-example
https://github.com/yueyoum/unity3d-scripts/blob/master/networking-with-protobuf-example/NetWorking.cs
https://silentorbit.com/protobuf/
https://github.com/hultqvist/ProtoBuf
http://dotdotnet.blogspot.com/2014/08/protobuf-in-unity3d.html
https://github.com/pomelonode/pomelo-protobuf
http://www.minaandrawos.com/2014/05/27/practical-guide-protocol-buffers-protobuf-go-golang/
https://golang.org/doc/install
https://storage.googleapis.com/golang/go1.4.darwin-amd64-osx10.8.pkg

20:19:15 ~/Code/boltrepo/servers/intermediate/golang$ mkdir pkg
20:19:20 ~/Code/boltrepo/servers/intermediate/golang$ mkdir src

005-07. Get the protocol buffers compiler for your platform (I used homebrew to install it). For other platforms, so the instructions at
https://developers.google.com/protocol-buffers/docs/downloads

20:36:54 ~/Code/boltrepo/servers/intermediate/golang$ brew install protobuf

20:44:40 ~/Code/boltrepo/servers/protobuf/protobuf-2.6.1$ protoc --version

libprotoc 2.6.1

005-08. Get the protocol buffer libraries for the Go language from https://github.com/golang/protobuf:

20:48:01 ~/Code/boltrepo/servers/intermediate/golang$ echo $GOPATH

/Users/dgolds/Code/boltrepo/servers/intermediate/golang

20:48:07 ~/Code/boltrepo/servers/intermediate/golang$ go get -u github.com/golang/protobuf/{proto,protoc-gen-go}

20:48:12 ~/Code/boltrepo/servers/intermediate/golang$ ls

bin/ pkg/ sourceme src/

005-09. Create a protocol buffer file for a very simple inventory list. Call it “GameDatabaseProtobuf.proto” and save it in a new folder

20:55:22 ~/Code/boltrepo/servers/intermediate/golang/src$ mkdir GameDatabaseProtobuf

20:55:34 ~/Code/boltrepo/servers/intermediate/golang/src$ cd GameDatabaseProtobuf

20:55:40 ~/Code/boltrepo/servers/intermediate/golang/src/GameDatabaseProtobuf$ more GameDatabaseProtobuf.proto
package GameDatabaseProtobuf;

message FullInventory {

 required int32 clientId = 1;

 repeated InventoryItem InventoryItems = 2;

 message InventoryItem {

 required int32 ItemId = 3;

 required int32 Quantity = 4;

 }

}

005-10. Compile and build the protocol buffer file:

23:48:18 ~/Code/boltrepo/servers/intermediate/golang/src/GameDatabaseProtobuf$ protoc --go_out=.

GameDatabaseProtobuf.proto

23:48:23 ~/Code/boltrepo/servers/intermediate/golang/src/GameDatabaseProtobuf$ ls

GameDatabaseProtobuf.pb.go GameDatabaseProtobuf.proto

23:48:29 ~/Code/boltrepo/servers/intermediate/golang/src/GameDatabaseProtobuf$ go build

23:48:37 ~/Code/boltrepo/servers/intermediate/golang/src/GameDatabaseProtobuf$ cd ..

005-11. Create a very simple protocol buffer server (this will just save as a CSV for now):

23:52:11 ~/Code/boltrepo/servers/intermediate/golang/src$ mkdir GoProtocolServer

23:52:13 ~/Code/boltrepo/servers/intermediate/golang/src$ cd GoProtocolServer

23:52:17 ~/Code/boltrepo/servers/intermediate/golang/src/GoProtoServer$ vi GoProtocolServer.go

package main

import (

 "fmt"

 "github.com/golang/protobuf/proto"

 "net"

 "os"

 "GameDatabaseProtobuf"

 "encoding/csv"

 "strconv"

)

 func main() {

 fmt.Printf("Started ProtoBuf Server")

 c := make(chan *GameDatabaseProtobuf.FullInventory)

 go func(){

 for {

 message := <-c

 writeValuesTofile(message)

 }

 }()

 // Listen to the TCP port

 listener, err := net.Listen("tcp", "127.0.0.1:2110")

 checkError(err)

 for{

 if conn, err := listener.Accept(); err == nil{

 // If err is nil then that means that data is available for us so we take up this data and pass it to a new goroutine

 go handleProtoClient(conn, c)

 } else{

20

https://developers.google.com/protocol-buffers/docs/downloads
https://github.com/golang/protobuf

 continue

 }

 }

 }

 func handleProtoClient(conn net.Conn, c chan *GameDatabaseProtobuf.FullInventory){

 fmt.Println("Connection established")

 // Close the connection when the function exits

 defer conn.Close()

 // Create a data buffer of type byte slice with capacity of 4096

 data := make([]byte, 4096)

 // Read the data waiting on the connection and put it in the data buffer

 n,err:= conn.Read(data)

 checkError(err)

 fmt.Println("Decoding Protobuf message")

 // Create an struct pointer of type ProtobufTest.TestMessage struct

 protodata := new(GameDatabaseProtobuf.FullInventory)

 // Convert all the data retrieved into the ProtobufTest.TestMessage struct type

 err = proto.Unmarshal(data[0:n], protodata)

 checkError(err)

 // Push the protobuf message into a channel

 c <- protodata

 }

 func writeValuesTofile(datatowrite *GameDatabaseProtobuf.FullInventory){

 // Retrieve client information from the protobuf message

 ClientID := int(datatowrite.GetClientId())

 // retrieve the message items list

 items := datatowrite.GetInventoryItems()

 fmt.Println("Writing value to CSV file")

 // Open file for writes, if the file does not exist then create it

 file,err := os.OpenFile("CSVValues.csv", os.O_RDWR|os.O_APPEND|os.O_CREATE, 0666)

 checkError(err)

 // make sure the file gets closed once the function exists

 defer file.Close()

 // Go through the list of message items, insert them into a string array then write them to the CSV file.

 writer := csv.NewWriter(file)

 for _,item := range items{

 record := []string{strconv.Itoa(ClientID), strconv.Itoa(int(item.GetItemId())),

strconv.Itoa(int(item.GetQuantity()))}

 writer.Write(record)

 fmt.Println(record)

 }

 // flush data to the CSV file

 writer.Flush()

 fmt.Println("Finished Writing value to CSV file")

 }

 func checkError(err error){

 if err != nil {

 fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())

 os.Exit(1)

 }

 }

23:52:42 ~/Code/boltrepo/servers/intermediate/golang/src/GoProtoServer$ go build

23:53:11 ~/Code/boltrepo/servers/intermediate/golang/src/GoProtoServer$ go install

23:53:12 ~/Code/boltrepo/servers/intermediate/golang/src/GoProtoServer$ ls ../../bin

GoProtoServer* protoc-gen-go*

23:53:23 ~/Code/boltrepo/servers/intermediate/golang/src/GoProtoServer$ GoProtoServer

Started ProtoBuf Server

At this point we have a working, but very simple Protocol Buffer server written in Go, and just writing to CSV files. See this article to get an
understanding of how this intermediate server works

NEXT: IMPLEMENT THE SAME PROTOCOL BUFFER CODE ON UNITY SO THE BOLT SERVER CAN READ/WRITE DB via PROTOBUFs

Building a protocol buffer client in Unity to connect to the ‘Game DB Server’

005-12. Bring in a Unity protocol buffer library

TODO - finish this recipe on the Unity side

Recipe #006: Customized Bolt Settings configuration at runtime (TODO)

TODO reference https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/CustomConfiguration.md and
http://wiki.boltengine.com/wiki/4/custom-configuration

21

http://www.minaandrawos.com/2014/05/27/practical-guide-protocol-buffers-protobuf-go-golang/
https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/CustomConfiguration.md
http://wiki.boltengine.com/wiki/4/custom-configuration

Recipe #007: Interpolating / DR for less jitter (TODO)

TODO -See https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/InterpolatedSnapshots_vs_DeadReckoning.md and
http://wiki.boltengine.com/wiki/5/interpolation-vs-extrapolation

Note that there have been jitter issues with Interpolation for a few releases and they were finally fixed in 0.4.1.5, so do update to 0.4.1.5 if you are
having issues with interpolation.

Recipe #008: Inventory for a Player (TODO)

TODO - Use the State replication destinations to only replicate to Controller. A good approach is to simply have a Inventory structure on the
Player, but set the Inventory structure to only replicate between owner and controller.

5. Appendix

Information Sources used in this document

●​ The Reddit Bolt 0.4 Wiki (stale)
●​ http://doc-api.photonengine.com/en/bolt/current/index.html
●​ The Slack (Jabbr archive is pinned)
●​ The Bolt Forum

To Do’s to update this doc

●​ .SetDynamic and .GetDynamic (a way of getting/setting states from other assets...)
●​ change from mod = State.Modify() to direct setters/getters (removed in 0.4.3)
●​ In 0.4.1.5 and forward you can also call entity.Freeze(true); to stop it from updating completely (note that Bolt now has SetIdle, Freeze,

Attach/Detach and Priority - need to do a write up here or refer to fholms of he does one).
●​ new ‘attach on load’ flag in the scene properties of "Bolt Entity" “ you can modify it on the scene object”
●​ POI and AOI

○​ Bolt's AOI stuff does instantiate/destroy: https://www.youtube.com/watch?v=ELp702pRNg4&spfreload=10
○​ Reference this in with the ‘don’t disable game object stuff’

Game genres that BOLT is not appropriate for

a) Don’t use BOLT for games that require deterministic multiplayer simulation (e.g. RTS)

See for an intro on lockstepping. Bolt can’t run the simulation for the same reason Unity can’t run the simulation:

For example in Starcraft 1 and 2, they don’t sync unit positions, or health, or ANYTHING over the network, the only thing they sync is
keypresses + mouse clicks, aka user input. The code runs the simulation locally for each person, with everyone's kb/mouse input and the
output is identical on each machine. Basically determinism is about mathematical purity, the entire simulation can be described like this: s' = f(s)
where s is the current state, s' is the next state, and the simulation is the function f() and there are no more parameters to the function

In fact the non-determinism (ordering etc) of Unity’s MonoBehavior callbacks means much of the logic cannot be in Unity callbacks (Update(),
FixedUpdate(), no co-routines, Awake(), Start() etc).. So Unity can be used as nothing more than a presentation of a game that is simulated
outside of Unity (e..g in a DLL). Similarly, since Bolt runs in Unity callbacks, it can’t provide the determinism either without a major rewrite (and
would be a very different thing).

Consider something like this https://www.photonengine.com/en-US/TrueSync

8. Troubleshooting resources

1.​ Grok this document!
2.​ https://doc.photonengine.com/en-us/bolt/current/reference/troubleshooting
3.​ The Slack (get invite here https://photonbolt.herokuapp.com/)

Quick list of recent/common issues:

●​ The POI/AOI examples provided with Bolt will not work with scene entities

22

https://github.com/BoltEngine/bolt_documentation/blob/master/wiki/InterpolatedSnapshots_vs_DeadReckoning.md
http://wiki.boltengine.com/wiki/5/interpolation-vs-extrapolation
http://www.reddit.com/r/boltengine/wiki/index
http://doc-api.photonengine.com/en/bolt/current/index.html
http://forum.photonengine.com/categories/bolt-engine
http://wiki.boltengine.com/wiki/42
https://www.youtube.com/watch?v=ELp702pRNg4&spfreload=10
https://www.photonengine.com/en-US/TrueSync
https://doc.photonengine.com/en-us/bolt/current/reference/troubleshooting
https://photonbolt.herokuapp.com/

	Bolt Engine Cheatsheet
	1. BoltEngine Fundamentals
	The heart of the BoltEngine programming model: The BoltEntity
	The BoltEngine Developer experience
	BoltEngine Debugging and Logging workflows
	BoltEngine and version control
	Upgrading Bolt versions

	BoltEngine supported platforms & their quirks (TODO)

	2. The three main Concept Groups in Bolt
	Bolt Network Roles (Server and Client)
	Bolt Entity Roles (Owner, Controller and Proxy)
	Owner/Controller duality is a key source of confusion

	 Bolt Message types (Commands, States and Events)
	State callbacks
	An additional but important ‘message type’: IProtocolToken during BoltNetwork.Instantiate()/Attached() and Connect()
	How Commands become State changes

	3. Bolt Code and Objects: Classes, Singletons, Callbacks, GameObjects, Components and Scripts
	Common Bolt Super-Classes that your code will sub-class
	Bolt Callbacks
	Global and Entity contexts for callbacks
	Execution order and responsibilities of Bolt Callbacks
	
	Extra notes on Scene Loading callbacks: SceneLoadLocalDone() and SceneLoadRemoteDone()

	Bolt Singletons & statics - always there when you need them
	Bolt GameObjects - Prefabs, Parenting and more
	Making Bolt Entities as Unity Prefabs
	Parenting, deparenting and reparenting BoltEntities (TODO)
	Don’t make BoltEntity’s GameObject inactive
	Setting the UniqueId for a Bolt Entity
	Typical naming conventions and responsibilities for your Bolt-related scripts

	4. A BoltEngine Cookbook
	Recipe #000: Start with a stable base game (the tutorial) and check Bolt is behaving
	Recipe #001: Creating a simple physics-controlled ball
	Recipe #002: Creating a simple NPC that can take damage and die (TODO)
	Recipe #003: Creating a drop item from a dying NPC (TODO)
	Recipe #004: Creating stuff that floats around with the player (like drones) (TODO)
	Recipe #005: A NPC with persistent state in a database (TODO)
	Building a Go-based intermediate ‘database server’ to use protocol buffers
	Building a protocol buffer client in Unity to connect to the ‘Game DB Server’

	Recipe #006: Customized Bolt Settings configuration at runtime (TODO)
	Recipe #007: Interpolating / DR for less jitter (TODO)
	Recipe #008: Inventory for a Player (TODO)

	5. Appendix
	Information Sources used in this document
	To Do’s to update this doc
	Game genres that BOLT is not appropriate for

	8. Troubleshooting resources

