

PSN COLLEGE OF ENGINEERING AND TECHNOLOGY (Autonomous) Melathediyoor, Tirunelveli – 627152

Department of Computer Science and Engineering

COURSE FILE (Regulation 2022)

Subject Code : CS630204

Subject Name : **OPERATING SYSTEMS**

Regulation : REGULATION 2022

Semester : III

Academic Year : 2023 - 2024

Department : COMPUTER SCIENCE AND ENGINEERING

Degree & Programme : B.E. COMPUTER SCIENCE ANDENGINEERING

Prepared By

Name : Mr. N. Ponnithish

Designation : Assistant Professor

Department : Computer Science and Engineering

Course File Verification and Auditing

Part-I (At the beginning of the semester)

			`	Che	eck List					
Submissi on Date	Vision and Missi on	Course Descripti on, Objective and Outcomes	CO-P O mappi ng	Cour se Plan and Targe t	Syllab us and Conte nt beyon d Syllab us	Assignme nts & additional resources	Course Delive ry Plan	Universi ty Questio n Papers	Verifie d by HOD	Verified by Academ ic Auditor

Part-II (After CAT - I)

			Check List				
Submissio n Date	Syllabus Coverag e	Notes and Other Material s	Performanc e Analysis	Feedbac k	Proof for Participator y Learning	Verified by HOD	Verified by Academi c Auditor

Part-III (After CAT - II)

			Check List				
Submissio n Date	Syllabus Coverag e	Notes and Other Material s	Performanc e Analysis	Questio n Papers and Keys	Proof for Participator y Learning	Verified by HOD	Verified by Academi c Auditor

Part-IV (After Model examination)

			Check List				
Submissio n Date	Syllabus Coverag e	Notes and Other Material s	Performanc e Analysis	Questio n Papers and Keys	Proof for Participator y Learning	Verified by HOD	Verified by Academi c Auditor

Signature of Dean Academics

Signature of Principal

Contents

Sl.No.	Description	PageNo.
1	Pre-requisite	
2	Course Description	
3	Career Opportunities	
4	Syllabus	
5	Course Outcome (COs)	
6	Instructional Learning outcomes	
7	Program Educational Objectives (PEOs)	
8	Program Outcomes (POs)	
9	Program Specific Outcomes (PSOs)	
10	CO and PO mapping	
11	Text Books & Reference Books	
12	Web resources	
13	E – learning links	
14	Magazines & Journals	
15	Lesson Plan	
16	Class time table	
17	Course time table	
18	Content Delivery Methodologies	
19	Assignments	
20	Assignment Rubrics	
21	Mapping of CO to Assignment	
22	Assessment Methodologies	
23	Distribution of portions for assessment tests	
24	Mark Allotment for CO Assessment	
25	Lecture Notes	
26	Content beyond syllabus	
27	Question Bank	
28	End Semester questions papers	
29	Students' Name list	
30	Identification of fast and slow learners	
31	Remedial Action for slow learners	
32	Encouragements for fast learners	

33	Students' group list for topic discussion	
34	Course Review & Closure Report	

COURSE PLAN

R- 2022

Subject Name & Code OPERATING SYSTEM &CS630204

Course Type Core Paper

Programme B. E Computer Science and Engineering

Year/ Semester/ Section II / III/'A'

Nature of Course / Credit Theory / 3

Course Coordinator Mr. N. Ponnithish

VISION AND MISSION OF THE INSTITUTE:

Institution Vision		erge as a pioneer institute inculcating engineering education, skills, h, values and ethics.			
	IM-1	To achieve greater heights of excellence in technical knowledge and skill development through innovative teaching and learning practices.			
	IM-2	IM-2 To develop the state of art infrastructure to meet the demand technological revolution.			
Institution Mission	IM-3	To improve and foster research in all dimensions for betterment of society.			
	IM-4	To develop individual competencies to enhance innovation, employability and entrepreneurship among students.			
	IM-5	To instill higher standards of discipline among students, inculcating ethical and moral values for societal harmony and peace.			

VISION AND MISSION OF THE DEPARTMENT:

Department Vision		rge as a preeminence program to produce quality Computer Science gineering graduates
Donautment Mission	DM-1	To train the students according to their discipline to meet dynamic needs of the society
Department Mission	DM-2	To promote research and continuing education

DM-3	To enhance professional and entrepreneurial skills through industry institute interaction to enable them in getting better placement
------	--

1.PRE REQUISITES

☐ Good knowledge of C, Computer Organization and Architecture, x86 Assembly level programming.

2.COURSE DESCRIPTIONS

This course teaches basic operating system abstractions, mechanisms, and their implementations.
The core of the course focuses on OS support for concurrency (threads) and synchronization, resource
management (CPU, memory, I/O), and distributed services

3. CAREER OPPORTUNITIES:

Application Support Engineer - Linux OS/Windows OS Operating System Developer_Graphics
Opportunity for Operating System Developer
HP UX Server Operating System Management

4.SYLLABUS

UNIT–I	OPERATING SYSTEMS OVERVIEW	Hrs		
Distributed systems – Clu	ain frame systems – Desktop systems – Multiprocessor systems – ustered systems – Real-time systems – Handheld systems – Operating m components – Operating system services - System calls – System re	6		
UNIT-II	PROCESSES AND THREADS	Hrs		
Process: Process concept – Process scheduling – Operations on processes – Cooperating processes – Interprocess communication – Communication in client-server systems - Threads: Overview - Multithreading models – Threading issues – Pthreads - CPU Scheduling: Basic concepts - Scheduling criteria – Scheduling algorithms – Multiple-processor scheduling – Real time scheduling				
UNIT-III	PROCESS MANAGEMENT	Hrs		
Process synchronization: The critical-section problem – Synchronization hardware – Semaphores – Classic problems of synchronization – Critical regions – Monitors –Deadlocks: System model – Deadlock characterization – Methods for handling deadlocks – Recovery from deadlock				
UNIT –IV	STORAGE MANAGEMENT	Hrs		
Memory Management: Background -Swapping - Contiguous memory allocation - Paging - Segmentation - Segmentation with paging - Virtual Memory: Background - Demand paging - Process creation - Page replacement - Allocation of frames - Thrashing				
UNIT-V	I/O SYSTEMS	Hrs		

File-system interface: File concept – Access methods – Directory structure – File-system mounting	6
- File sharing - Protection - File-system implementation: Directory implementation - Allocation	
methods - Free-space management - Mass storage structure: Disk structure - Disk scheduling -	
Disk management – Swap-space management	

Total:30Periods

5. COURSE OUT COMES

CO's	CO – STATEMENTS	BLOOMS LEVEL	PO's
CO 1	To gain knowledge about various advanced techniques and concepts involved in operating systems	K1	1,2,3,9,11, 12
CO 2	To incorporate knowledge to processes and threads	K2	1,2,3,9,11
CO 3	To know the concept of semaphore and deadlock	K4	1,2,3,9,11, 12
CO 4	To study about the various storage strategies	K4	1,2,3,9,11, 12
CO 5	To study about the concepts of I/O systems	K2	1,2,3,9,11, 12

6. INSTRUCTIONAL LEARNING OUTCOMES

UNIT	LEARNING OUTCOMES
I	The outcome will be assess through Observation, Class test -1, MCQ Test, CAT-I
II	The outcome will be assess through Observation, Class test -2, MCQ Test, CAT-I,CAT-I
III	The outcome will be assess through Observation Class test -3, MCQ Test, CAT-I, CAT-II.
IV	The outcome will be assess through Observation, Class test -4, MCQ Test, CAT-II, CAT-II.
V	The outcome will be assess through Observation, Class test-5, MCQ Test, CAT-II.
Practica 1	CAT III

7. PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

S. No	Objective	PEOs						
PEO1	Fundamental Knowledge	Graduates will be able to perform in technical and manageria roles ranging from design, development and problem solving t suit to the industrial needs						
PEO2	Career Development	Graduates will be able to successfully pursue higher education, Graduates will have the ability to adapt, contribute and						

		innovate new technologies in different domains of computer science & Engineering
PEO3	Social Identity	Graduates will be ethically and socially responsible engineers
		in computer science & Engineering disciplines

8. PROGRAM OUTCOMES [PO's]

PO's No	KNOWLEDGE	STATEMENTS	APPLIANCE
1	Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Theory/ Practical / Project work
2	Problem Analysis	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Theory / Practical / Projects
3	Design / Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Theory / Practical / Projects
4	Conduct Investigations of Complex Problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Theory / Practicals
5	Modern Tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	Theory / Practical / Project work
6	The Engineer and Society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Theory / Industrial visit / In plant training

7	Environment and Sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Theory / Industrial Visit/ In plant Training
8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	Theory / Industrial visit / In plant training
9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Projects
10	Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Projects/ Seminar/ Mini Project
11	Project Management and Finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Projects
12	Life-long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Projects / Higher Studies

9. PROGRAMME SPECIFIC OBJECTIVE (PSO's)

	Description of London with a strong continuous in the LOT described in
	Proficient and Innovative with a strong cognizance in the IOT, through the
PSO1	Application of acquired knowledge and skills.
	Design and Implement IOT based solutions for improving operational efficiency by investigating
PSO2	existing industrial environment.
1 302	Cxisting industrial criviloriment.

10. CO- PO MAPPING

CO's NO	COURSE OUTCOME	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2
	Understand the fundamental concepts of operating system	2	1	2						2		1	2		
CO2	Understand the concept of processes and threads scheduling	1	2	1						1		2			

CO3	Analyze the various semaphores techniques and the deadlock handling mechanism	2	2	1			2	2	1	
	Analyze the different storage management strategies	2	1	2			1	1	2	
	Understand the concept of I/O systems	1	2	2			1	1	1	

11. TEXT BOOK & REFERENCE BOOK LIST

Sl. No	Description						
Text Book(s):							
1	Silberschatz, Galvin and Gagne, "Operating System Concepts", Eighth Edition, John Wiley & Sons Inc., Reprint 2011	T1					
Reference Book(s):							
1	William Stallings, "Operating Systems: Internals and Design Principles" Seventh Edition, Pearson Education, 2011	R1					
2	Pramod Chandra P Bhatt, "An Introduction to Operating Systems : Concepts and Practice", PHI Learning Pvt. Ltd.,2010	R2					

12. Web Resources

Sl. No	Topic	Web link
1.	Web Operating System	https://www.geeksforgeeks.org/web-operating-system/

13. E- learning / NPTEL

NPTEL/ OTHER UNIVERSITY video lectures related to syllabus:				
Video	https://onlinecourses.nptel.ac.in/noc20_cs04/preview			
Lecture	file:///C:/Users/DELL/Downloads/lecture note 440507181044270.pdf			
Notes				

14. MAGAZINE & JOURNALS

Magazine	https://biztechmagazine.com/software/operating-systems

15. LESSON PLAN

S.No.	Topic to be covered	Hours Neede d	Mode of Teaching ⁺	Text/ Ref. Book	Page No.	
	UNIT I - OPERATING SYSTEMS OVERVIEW					
1	Operating system – Main frame systems – Desktop systems – Multiprocessor systems – Distributed systems	1	ВВ	Т1	3-9	
2	Clustered systems – Real-time systems – Handheld systems	1	1 BB		9	
3	Operating System structures: System components	1	ВВ	T1	27	
4	Operating system services - System calls-System programs	2	BB	T1	49-66	
5	System programs -System structure 1 BB		T1	66-70		
6	O.S Debugging*	1	PPT	NPTEL	-	
	UNIT II – PROCESSES AND THREADS					
7	Process: Process concept	1	BB	T1	101	
8	Process scheduling – Operations on processes-Cooperating processes	1	ВВ	T1	105-112	
9	Inter process communication-Communication in client-server systems	1	1 BB T		116-128	
10	Threads: Overview - Multithreading models – Threading issues– Pthreads	1 BB T1		T1	153	
11	CPU Scheduling: Basic concepts - Scheduling criteria	1	ВВ	T1	157	
12	Scheduling algorithms-Multiple-processor scheduling – Real time scheduling	1	ВВ	T1	159-188	

	UNIT III – PROCESS MANAGEMENT					
13	Process synchronization: The critical-section problem 1 BB T1			T1	225	
14	Synchronization hardware – Semaphores	1	1 BB T1		227	
15	Classic problems of synchronization	1	BB	T1	231	
16	Critical regions – Monitors	1	BB T1		234	
17	Deadlocks: System model – Deadlock characterization	1	BB T1		239	
18	Methods for handling deadlocks-Recovery from deadlock	1	BB/ Tutorial	283-285		
19	Real time examples of deadlock*	1	PPT	NPTEL	-	
	UNIT IV – STO	PRAGE I	MANAGEMEN	Γ		
20	Memory Management: Background	1	BB	T1,R1	314-320	
21	Swapping – Contiguous memory allocation 1 BB T1,R1			T1,R1	322-324	
22	Paging-Segmentation – Segmentation with paging	1	BB T1		326-342	
23	Virtual Memory: Background	1	BB	T1	346	
24	Demand paging – Process creation	1	BB	T1	361	
25	Page replacement – Allocation of frames— Thrashing	1	BB	T1	369-371	
26	Case study of Thrashing*	1	PPT NPTEL		-	
	UNIT V - I/O SYSTEMS					
27	File-system interface: File concept-Access methods	1	PPT	T1	421-433	
28	Directory structure – File-system mounting-File sharing - Protection	1	BB	T1	444-451	
29	File-system implementation: Directory implementation	1	1 BB T1		470	
30	Allocation methods – Free-space management	1 BB T1		479		
31	Mass storage structure: Disk structure-Disk scheduling-Disk management	1	ВВ	T1,R3,R 4	508-520	
32	Swap-space management	1	BB	T1	522	
	Real time Operating systems*	1	PPT	NPTEL	-	
Total Hours Needed: 30 +4 = 34 Hours				d: 30 +4 =		

^{*} Content beyond Syllabus

PRACTICAL EXERCISES

S.NO	EXERCISES	Hours Needed		
1	Create new processes and do communicate using pipe	3hrs		
2	Make communication between the processes using shared memory and message queue			
3	Simulate the following CPU scheduling algorithms a) FIFO b) SJF c) Priority d) Round Robin	3hrs		
4	Implement Peterson's solution using semaphore	3hrs		
5	Implement dinning philosopher problem using semaphore	3hrs		
6	Simulate Bankers Algorithm for Dead Lock Avoidance	3hrs		
7	Simulate Bankers Algorithm for Dead Lock Prevention	3hrs		
8	Simulate all File Organization Techniques a) Single level directory b) Two level c) Hierarchical d) DAG	3hrs		
9	Simulate Paging Technique of memory management	3hrs		
10	Simulate all page replacement algorithms a) FIFO b) LRU c) LFU	3hrs		
	Total Hours	30hours		

Signature	Prepared by:	Approved by:			
Name:	Mr. N. Ponnithish	Dr.M.VARGHEESE	Dr.S.P.Umayal	Dr. V. Manikandan	
Designation:	Assistant Professor	HoD / CSE	Dean Academic	Principal	
Date:					