CFSoundSystem for Music and Sounds

Version History:
9/28/2023 First draft documentation of the new SDK7 system
10/3/2023 Brought it up to current SDK7 code

Table of Contents

R ToTo] o1 TSP 2
8T 1= o o TP 2
Components at @ GIANCE..........oooiiii i ——————————————————————————es 2
MV C DeSIgN PatterN........coi ot 3
Component Details and Relationships.........coooviiiiiiiiice s e 4
MOGEL ... ——————————————————— 4
CFSouNdSyYStEMMOUAEL.... ... e e e e eee e e e e e e e e eeeeeeeeeees 4

L7 1170 1= SRS 4
CFSouNdSyYSteMCONTIOIIET.......coiiiiiiiee e 4

VB S ettt ettt et et ettt e ettt et e ettt te et ee e et et e et aaaaaaaaaaaaaaaaaaaaaaas 6

[N 07 0] o E=To [T 6
811 C= =T S 6
CFSOUNAPIGYET.......ccc oo 6

Other INfrastruCture ClasSesS. .. oottt eeeeeeeeeeeeeeeeeas 7
DJBooth — Physical infrastructure on which a DJConsole can be placed.......................... 7
DJBoothSetupButton - Changes appearance of the DJBooth.........c.coovvvvvviiiiiii. 7
CFSoundSystem ArchiteCture...........ccccciiemeeeeeeeeeece e e e e e e e e e e e rreeees 8
Typical SetUP SEQUENCE..........ooi it s s s s s s s e e s s s s s s s s ssnsnen 9
1. Instantiate @ CFSoundSystemMOdEL.............oooiiiiiiii e 9

2. Instantiate @ CFSoundSystemCONtroller..............eiiiiiiiii e 9

3. (Optional) Set up @ DIBOON..........coiiiiiiiee e 10

4. (Optional) Set up two DJBoOthSetupBULIONS............cvviiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 10
5.8etup @ CFSOUNPIAYET.........cooiiiiiiii 10

6. S UP SOME “VIBW(S”). ittt e e e e e e e e e e e e e annee 11

a. (Optional) Set up @ DJCONSOIE..........ueeiiiiiiiiiiiiee s 11

b. (Optional) And/or, set up one or More JUKEBOX..........cuuuiiiiiiiiiiiiiiiiicee e 12
Additional NOtes.........coiiiiiiiiiii s 13
Locus, Playerld, and Table............cooo i e e e eeaaeas 13

1Y/ oY LR 13
data.dJBOOTNINAEX 13

L0 LT = 057 1= 14
L LoV T =TT 1= Ot 14

Scope

This document describes a number of advanced model, view, and control modules for managing
sound or especially music, in a Decentraland scene. A typical use is a DJConsole for streamed
audio or music file playing, and/or a Jukebox setup.

Audience

Internal reference documentation for the developer of the system.
Possible developer-user subscribers or licensees.

Components at a glance

The components in this collection of classes can be assembled to produce a “CFSoundSystem”.
More details in subsequent sections

e CFSoundSystemModel - the “Model” in this system.
This class understands “Contexts”, “Catalogs”, and “States”, and it gets them from the
cloud, based on settings in a CFSoundSystemConstants file. The cloud service and

database are the same in this SDK7 version as they were in SDKG6.

e CFSoundSystemController - the “Controller” in this system.
This class orchestrates the relationship between one or more views (UX devices, sound
players) and a model (e.g. the CFSound System.)

e DJConsole - This class presents a 3D UX “view” for the system

e CFJukeBox - This class presents a different 3D UX “view” for the system

e CFSoundPlayer - This class manages the playing and stopping of sound from the
location of a single Decentraland Entity. It can play streams from the cloud, or files
deployed in the scene. There can be multiple CFSoundPlayers in a scene. They can be

used standalone, or they can be children of a CFSoundSystem

e DJBooth - This class presents a DJBooth. A DJConsole is typically placed on top of a
DJBooth. This DJBooth has several 3D Model “styles” that can be selected.

e DJBoothSetupButton - (lives in the DJBooth code file). A pair of these buttons is

typically placed in some not-so-obvious place in a scene, by which a scene manager
can, from in-world, change the booth appearance.

MVC Design Pattern
The CFSoundSystem is based on an MVC design pattern.

I

UPDATES MANIPULATES
VIEW CONTROLLER
\ /
[y
<]
Ry &
N\ /
USER

Communication to the Model and the Controller are by way of method calls which are
abstracted by Interfaces. Communication between the Model’s client code and the cloud
service, which maintains the state of the system for various scenes, is by a REST service.
Communications originating from the Model and Controller to the View(s) are by events (using
the required EventManager module)

Model (ISoundSystemModel interface)

The Model represents the catalog of sounds and the state of sound in a scene and, if the
system is in useService mode, is connected to a cloud service that persists the model.

It is sent commands from the Controller for state changes.

The model performs the state changes, and issues Events back to any listeners.

The Views typically listen to these events and adjust their appearance and sound generation as
a result.

In this system, the CFSoundSystemModel class is the scene-side of the Model, implementing
the ISoundSystemModel interface.

View(s)
There are both Visual and Audio “Views” in this system.

Visual: the in-world Uls/UXs that show the status of sound or music that is selected,
playing, etc, and which may provide Ul controls, such as buttons, by which a user may
provide input to the Controller

Examples are the DJConsole and CFJukeBox classes.

Audio: The CFSoundPlayer, which receives load/play/stop command calls, with sound
specs provided.

It is typically operated by commands from one View in the scene

It sends out Events, to which that View typically listens.

The event sent is when a fixed-duration audio sound has ended.

Controller (ISoundController interface)

The Controller orchestrates the system
It receives state-change-request calls from the Ul Views as a result of user actions upon them
It forwards these change requests to the Model.
It receives change events from the Model
It issues events (but in the typical architecture they are ignored by the Views)
These are forwarded to the View(s) as events
In this system, the CFSoundSystemController class is a Controller, implementing the
ISoundSystemModel interface.

Component Details and Relationships

Model

CFSoundSystemModel

This class understands “Contexts”, “Catalogs”, and “States”..
It polls the cloud service at a regular interval, getting the relevant Context, Catalog and State,
and processes that data, firing events to a controller/orchestrator (e.g.
CFSoundSystemController) for it to handle changes that have occurred in the model.
If in useService mode,

it gets the current state of the model from the cloud,

based on settings in a CFSoundSystemConstants file
else

It gets them from a local file initializer and maintains the model state in local client memory.
It also receives model state-change requests from the Controller, makes them to the model, and
issues events for various types of changes.

Controller

A controller must implement the ISoundSystemController interface, and generate the required
SoundControllerEvent events.

CFSoundSystemController

This is the MVC Controller..

It is set up by the scene, and is given the event handlers of Views in the scene.

This class receives change requests from the Views, and forwards them to the Model
It can provide events, but typically the Views get their events from the Model

Views

NOTES:

1. One of the Views (typically the DJConsole, but potentially a JukeBox) is configured to
a. operate the system’s CFSoundPlayer, calling it to load, play and stop sounds, and

b. receive events from the CFSoundPlayer when sounds (of fixed duration) have ended.
2. One of the Views (typcially one JukeBox, but potentially the DJConsole) is set to
handle an optional queued playlist of songs or sounds, advancing to the next sound in
the playlist when the former one has ended.

DJConsole

This class presents a 3D Ul to display information from the Model and to send user change
requests to the Controller.-

JukeBox

This class presents a 3D Ul to display information from the Model and to send user change
requests to the Controller.

CFSoundPlayer

This class is basically a “View” that produces audio output, and that and signals end of sounds.
This class manages the playing and stopping of sound from the location of a single
Decentraland Entity. It uses an AudioStream to play streams from the cloud, or an AudioSource
to play MP3 files that have been deployed in the scene.

It can be used standalone, or they can be a components in a CFSoundSystem, in which case
they are typical managed by one View

Although there could be multiple CFSoundPlayers in a scene, only one will be heard at a time
(the most recent one that has been told to Play.) As a result, the typical configuration of this
system is to use one CFSoundPlayer, and to pass it to the constructor of one and only one of
the Views (DJConsole or JukeBox), which will manage it for the entire system.

Note that only one AudioStream or AudioSource can play at a time in a scene: The latest
AudioStream or AudioSource to play a stream or file silences any other ones that may have
been playing, and the old ones don’t resume automatically if the new one is stopped..

MP3TYPE sounds have a duration and the CFSoundPlayer keeps track of remaining time when
they play.

API:
e Set up the player ID to use in Event-based callback
e Set the Event listener

Remove and loaded sounds
Loading a Sound File (type: MP3TYPE)
Loading a Stream (type: STREAMTYPE)
o Only one Sound File or Stream can be loaded at a time
Play
Stop
Setting the duration that a sound should play
e Reducing the amount of time remaining to play (to be called from a system function)
Events Generated:
e An MP3TYPE sound has reached its play duration

Other Infrastructure Classes

DJBooth — Physical infrastructure on which a DJConsole can be placed

This class presents a DJBooth. A DJConsole is typically placed on top of a DJBooth. This
DJBooth has several 3D Model “styles” that can be selected.

DJBoothSetupButton - Changes appearance of the DJBooth

This class lives in the DJBooth code file, presents a 3D Button, and a pair of these is typically
used select the next or previous style of a DJBooth. .

CFSoundSystem Architecture

CFSound System Architecture for SDK7

DJConsole (View) CFJukeBox (View)
] DJTable DJTable Panel
DJSelector Logic Logic
Change

CFSoundSystemController

(Controller)
|
|
III t
(CFSoundSystemModel CFSoundService
| = Mode) (Model)
III

Cloud Audio Streams

Deployed Audio Files

Entity in Engine

CFSoundPlayer

Calls
Events

Typical Setup Sequence

[] Review this against the final coding

1. Instantiate a CFSoundSystemModel
a. Pass in context, realm, local data, refresh interval (0.5), useSystem (true),
debugLevel
b. Example code:
musicModel:ISoundSystemModelAPI = CFSoundSystemModel (

(.context && .context I= && .context I=

"2 .context:CFSoundSystemConstants.context,

.realm && .realm != && .realm !=
e .realm:"all",
localSoundSystemContext,
localSoundSystemState,
localSoundSystemCatalog,
0.5,

LOG_VERBOSITY

2. Instantiate a CFSoundSystemController

a. Pass into constructor the Model, and debug level
b. Example Code:
musicController:ISoundSystemController =
CFSoundSystemController(

musicModel,

LOG_VERBOSITY

3. (Optional) Set up a DJBooth

a. Example code:
djBooth = DJIBooth(

{

parent:scene,

position: Vector3.create(29,1.2,16),

rotation: Quaternion.fromEulerDegrees(0,0,0),

scale:Vector3.create(1,1,1)

4. (Optional) Set up two DJBoothSetupButtons
To call the show/hide method of the DJBooth

5. Set up a CFSoundPlayer

This will produce that actual sound in the scene. It will be the sound player for both the
DJConsole and the Jukebox(es)
a. Example code:
cfSoundPlayer = CFSoundPlayer(

9,

djBooth.rootEntity,
DEFAULT_FILE_LOG_VOLUME,

DEFAULT_STREAM_LOG_VOLUME,
LOG_VERBOSITY

6. Set up some “View(s”)

One of them should be the CFSoundPlayer handler
And one of them should be a queue handler if any of the Views can build playlist
queues. Examples would be:

a. (Optional) Set up a DJConsole

I/l e.g. on top of the DJBooth
DJConsole instantiates two CFSoundPlayers
Example code:

djConsole = DJConsole(

parent:djBooth.rootEntity,
position: Vector3.create(-0.24,0.12,0),
rotation: Quaternion.fromEulerDegrees(-490,-90,0),
scale: Vector3.create(1,1,1)
s
musicModel,
musicController,
cfSoundPlayer,

)

LOG_VERBOSITY

showDjConsole(show:boolean) {

console.log("/n*** DJConsole.show("+show+") still needs to be

implemented for hiding Console if booth name = ''")

djConsole.show(show)

showDjConsole(

b. (Optional) And/or, set up one or more JukeBox

Example code:
jukeBox = CFJukeBox(

parent:scene,

position:Vector3.create(29,0,11),

rotation:Quaternion.fromEulerDegrees(0,0,0),
scale:Vector3.create(0.63,0.63,0.63)

3>

musicModel,

musicController,

)

J

LOG_VERBOSITY

Additional Notes

Locus, Playerld, and Table

The term “locusNum” (or “loci” array in the plural) refers to an abstraction of a Ul location. lItis
represented in the Model as locusNum:number (or an array of them as “loci”. The database
stores them in the “loci” array field in State documents.

Currently States support exactly two loci. (0 and 1)

A DJConsole has two “DJTables” — the small upper panels that each display a loaded song, and
manage play, stop and volume. These two tables are mapped to loci 0 and 1 in the model and
database

A jukebox has one song showing/controllable, and is mapped to locusNum 0 (loci[0]).

Each locus can optionally have a queue, e.g for a song playlist managed by jukebox(es).

In the SDKG6 version of the code, and perhaps still a remnant in SDK7 code in
development, there were separate CFSoundPlayers for each locus. In SDK7 there is one
CFSoundPlayer for the entire system, and references to playerlD should be changed to
locusNum

Mode

Stored as a top level field in Context schema

Values are:
“CONSOLE’ - Only DJs/Admins can operate the system
“USER” - users can also operate the system using something like a Jukebox, and there
should be separate states for each

Scenes will use this depending on the control/realm setup desired

E.qg. if there is only an administrative View, probably this is set to CONSOLE

but if there is the ability for any player to control the system for everyone in the same
realm/island, this would be USER.

In scenes with both a DJConsole and a CFJukebox, the console can switch modes.

data.djBoothIndex:

Stored as a member of custom data field in Context schema
(not all scenes will use this)
Used by the DJConsole to persist, across all realms, the current index of the DJConsole style

Use Cases

e The Unity Cafe in the Decentraland Conference Center has a complete setup, with both
a DJConsole and a CFJukeBox.’
The on top of the tower in the DXTower scene in District X
An SDK7 demo scene at 5,117

Known Issues

The code conflates “playerld” and “locus

As of 10/2/2023 the SDK7 version of this system, which is a major rewrite, does not exist
in the Unity Cafe, but is demonstrated at Carl’'s SDK7 demol/test scene, at 5,117. The
Unity Cafe s of this date still uses SDK6 version

e CFJukeBox is not fully implemented for SDK7 as of 10/3/2023

e Playlists (Queuing of sounds/songs) has only a partial implementation for SDK7 in the
Model, as of 10/3/2023, no Views can yet control or display them

e In Preview mode, you must touch the scene before already-playing audio will be heard.
This is not needed in deployed scenes.

e The latest version of the SDK7 scene code is currently stored in the scene-base
repository, not in a separate repo of its own.

Updates needed:

[J Review/update the role of each component
[J Update the data flow, even types, etc.
[J CFSoundPlayer should not be described as a View.
[J And it is created by Controller.initialize(lociEntities)

[J Document: that a scene can only hear one AudioStream at a time, even if there are
multiple players/entities. AudioSources can be multiple, though each needs its own
entity

	CFSoundSystem for Music and Sounds
	Scope
	Audience
	Components at a glance
	MVC Design Pattern

	Component Details and Relationships
	Model
	CFSoundSystemModel

	Controller
	CFSoundSystemController

	
	Views
	DJConsole
	JukeBox
	CFSoundPlayer

	Other Infrastructure Classes
	DJBooth – Physical infrastructure on which a DJConsole can be placed
	DJBoothSetupButton - Changes appearance of the DJBooth

	CFSoundSystem Architecture
	Typical Setup Sequence
	1.​Instantiate a CFSoundSystemModel
	2.​Instantiate a CFSoundSystemController
	3.​(Optional) Set up a DJBooth
	4.​(Optional) Set up two DJBoothSetupButtons
	5.​Set up a CFSoundPlayer
	6.​Set up some “View(s”)
	a.​(Optional) Set up a DJConsole
	b.​(Optional) And/or, set up one or more JukeBox​

	
	Additional Notes
	Locus, PlayerId, and Table
	Mode
	data.djBoothIndex:

	Use Cases
	Known Issues
	Updates needed:

