
Supporting Active Fetches for
Background Fetch

nator@, Oct 15, 2018
Contributors: rayankans@, beverloo@, jakearchibald@

Requirements:
Currently, a developer only gets access to the downloaded content once the fetch has
completed. Access is always through match() and matchAll() on the
BackgroundFetchRegistration object.

We’d like to enable access to downloaded content as soon as it’s available. This allows for
developers to start playing a podcast, for instance, once some percentage of the audio resource
has downloaded. Access to active fetches should be intuitive, and easy.

Terminology
A fetch is active when we have started showing UI for it but haven’t finished downloading
content.

Considerations

When should response be available?
The BackgroundFetchRegistration objects expose match() and matchAll(). These return
BackgroundFetchRecords. Each record has a request and a (promise of a) response.

When the data for a given request is still being downloaded, is there benefit in exposing
whatever’s been downloaded in a response object?
Yes. Many podcasts are streamed, and the content will be downloaded as a single large file.
Movies, on the other hand, are generally sent down as fragments. To support being able to play
podcasts while they’re being downloaded, we need to expose access to responses that are still
being downloaded.

Chrome processes downloads via the DownloadManager. Only once a response has completed
downloading is it transferred to the Cache Storage. Therefore, exposing in-progress downloads



will require changes to the DownloadManager. Perhaps, it can write into a blob that Cache
Storage can consume, and then the blobhandle can be shared with the renderer as soon as it’s
created. Since this is a wider change, it makes sense to implement access to active fetches in
two stages:

a. Stage 1: Support access to data for completed requests in the active fetch.
b. Stage 2: Support access to data for all requests in the active fetch.

Let’s focus on Stage 1 in this document.

The multiple access problem
The tricky bit with accessing in-progress responses is that data can be accessed from multiple
sources. Luckily, this is read-only.

One option is to keep a list of BackgroundFetchRecords for every request in that registration,
then we can simplify things greatly. By returning the same record/blob for multiple calls.
This has two issues:

1. It makes match() and matchAll() inconsistent with Cache API’s match() and matchAll(),
which return (a) new independently-consumable response(s) each time they’re called.
(https://jsbin.com/cipavob/edit?js,console for reference)

2. It breaks retries for responses, when a server doesn’t support resuming of downloads.
For instance, if a download of a podcast is ongoing, and we’re streaming it, and the user
goes offline. The next time the user comes back online, the download is retried, but the
server simply sends the entire response from the beginning, so we start downloading
again. Now do we replace the existing response with one containing less data? That
breaks the ongoing streaming. (Spec bug to call out the fact that responseReady getting
rejected != the fetch failing).

Therefore, we need to return new BackgroundFetchRecord(s) everytime match or matchAll is
called.

Once we’ve implemented this, the following will hold:

const matches = await Promise.all([
registration.match('resources/feature-name.txt'),
registration.match('resources/feature-name.txt')

]);

assert_equals(matches[0], matches[1]); // will be FALSE

And

https://jsbin.com/cipavob/edit?js,console
https://github.com/WICG/background-fetch/issues/130


const responses = [
await matches[0].responseReady,
await matches[1].responseReady

];

assert_equals(responses[0], responses[1]); // will be FALSE

However, the response text can only be consumed once, from one record object. Different
record objects allow consumption of the same content independently.

const content = [
await responses[0].text(),
await responses[1].text() // won’t throw.

];

The increased lifetime problem
Once match() and matchAll() support access to active fetches, they’ll be called from the
Document context as well as ServiceWorker context. Previously, when we allowed access to
downloaded content only once the background fetch had completed, we could safely delete the
data corresponding to the fetch once the completion event had gone out of scope. Now,
BackgroundFetchRecords can potentially be kept around indefinitely from the Document
context.

Do we delete them?
BackgroundFetchRecord objects hold a request and a response. The former can hold large
content in case of upload requests (body), and the latter can hold a reference to large content in
case of download requests, which prevents that data from getting deleted.
For the sake of argument, also consider that if the developer leaves these records in scope after
they’re needed, they’re leaking memory which will get attributed to Chrome. However, they can
already do so by, for instance, doing
new Uint8array(massiveNumber)
and keeping a reference to it.
(This might expose garbage collector behaviour by querying available quota and monitoring
when it decreases, but that's an issue that already exists for fetch())
One might also expect these records to be available if they’re in scope, and deleting them might
be unexpected.

On the other hand, keeping these around long after the fetch has settled doesn’t make sense.



If we should, when should we delete data?
The Cache Storage implementation keeps track of all references to the downloaded content
held in blobs, and deletes the stored data once all references to it have gone. Once the
completion event goes out of scope, we can delete the request and response from the
BackgroundFetchRecord objects. The skeleton BackgroundFetchRecord objects can be left
until the Document goes out of scope.

To implement this, we’d need the BackgroundFetchRecord object to be notified when the
completion event goes out of scope.

CONCLUSION: Keep the BackgroundFetchRecord objects for the lifetime of the scope. Once
they go out of scope, their destructors will be called, releasing any references to the stored data
which will in turn, cause the Cache Storage to delete it.

responseReady
We’d like to return a responseReady promise that gets resolved with the correct response once
the request has completed. To enable that, we’d need to either:

a. Keep track of all active BackgroundFetchRecord objects for the registration, or,
b. Have the BackgroundFetchRecord objects listen to an update from the

BackgroundFetchRegistration object that created them. These updates will notify
completion of requests, and if the request corresponds to BackgroundFetchRecord’s
request, then they can resolve the responseReady promise, else ignore the update.

Duplicate URLs
The current implementation blocks requests with duplicate URLs within a background fetch. We
plan to remove this check in the future, to support uploads.
A layer will be added to Cache Storage to add an extra identifier to make these requests distinct
for Cache Storage. This extra identifier can also be used to disambiguate request completion
updates send from BackgroundFetchRegistration to all listening BackgroundFetchRecord
objects.

Details of this identifier are out of the scope of this document, and will be covered elsewhere.

match() and matchAll()
1. This should work once we update the MatchRequestTask to query registration user data

by all three key prefixes: active, pending, and completed, for the unique_id. This’ll make
sure we match requests in all states and return responses for them, wherever possible.

https://cs.chromium.org/chromium/src/content/browser/background_fetch/storage/get_settled_fetches_task.cc?rcl=31feac996c68b8024000bdad91de45536fd33bcb&l=45


2. There’s an additional check on the renderer side to reject match() and matchAll() if the
fetch hasn’t completed yet. This should be taken out.

onProgress events
These should continue working without any extra work, since we already send these whenever
‘downloaded’ changes.

However, we can reuse the registration notifier setup to also update the registration object on
the renderer side with completed response for a request, once it has been downloaded. This
can in turn be used to notify the relevant BackgroundFetchRecord objects listening for this, so
they can resolve any pending responseReady promises.

To achieve this, we would need the following:
1. A new notifier method to update the BackgroundFetchRegistration object in the renderer.

This would be something like OnRequestCompleted(blink::mojom::FetchAPIRequest
request, blink::mojom::FetchAPIResponse response).
This does send a completed response. This is what the Cache API implementation does.
Note that this object contains a BlobHandle, not the entire data blob.

2. A BackgroundFetchRegistrationObserver class, which BackgroundFetchRecord would
inherit from. BackgroundFetchRegistration would have a list of observers, which all be
notified in response to OnRequestCompleted.

3. Each BackgroundFetchRecord will have logic to response to OnRequestCompleted. This
will be a no-op if the request in the update doesn’t correspond to the record’s request. If
it does, the Record will attempt to resolve any pending responseReady() promise, via its
SetResponseAndUpdateState() method.

recordsAvailable
This is currently set to false once the Background Fetch completion events go out of scope. This
logic doesn’t have to be updated to support access to active fetches.

Lifetime Management
This could’ve been the hardest part of supporting access to active fetches, if we had to manage
the lifetime of request-response pairs ourselves. Luckily, the Cache Storage API gives us that
for free, and will delete data stored in the Cache Storage once the last reference to it is
released.
To test: Will that work across browser restarts?

https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/background_fetch/background_fetch_registration.cc?rcl=5d80e3087f51f96491f2a53df786447aa6458287&l=185
https://cs.chromium.org/chromium/src/out/Debug/gen/third_party/blink/public/mojom/fetch/fetch_api_response.mojom-blink.h?rcl=d08672d0c21a03ee84fa6d506a5ed11dd46f60db&l=98


Quota Management
Currently, when a fetch is completed and developers get notified of the same, they have about
five minutes (service worker timeout) to copy that data to a private cache. Potentially, for the
duration of this timeout, there could be a double quota penalty for the user, since both copies
are charged against the same quota account. Since this timeout is time-bounded, we were okay
with that for v1 of Background Fetch.

However, giving access to ongoing fetches increases this time window to the lifetime of the fetch
+ service worker timeout, and we must hence do the correct accounting.

Permissions
When a background fetch is started from a non-top level frame, we start the fetch in a paused
state and wait indefinitely until the user explicitly resumes it. The developer might not
understand what’s going on if they keep getting records for this fetch but no data gets
downloaded for them. I don’t have a good solution in mind here, except that we should have
some written guidance about this common caveat.

We can consider failing these fetches after a set (long) amount of time if the user doesn’t take
any action, so the developer can try again later.

BackgroundFetchSettledFetch
Since we’d not be interested in just settled fetches, this name would no longer be appropriate.
It’ll be a widespread name change, and methods such as GetSettledFetches* would need to be
renamed too.

Tests
We’ll need to add tests to ensure any downloaded data is being exposed appropriately, and
doesn’t go away upon browser restart.


