
Architecture Overview: A Two-Phase Approach

To build a robust and scalable multi-agent RAG system, we will divide the
architecture into two distinct phases:

1.​ The Setup Phase (Ingestion & Processing): This phase handles the initial
ingestion, processing, and storage of the uploaded PDF documents. Its
primary goal is to prepare the data in an optimal format for efficient retrieval
later.

2.​ The Runtime Phase (Query & Response): This phase is activated when a
user submits a query. It involves a sophisticated multi-agent system that
orchestrates the retrieval of relevant information from the processed
documents and generates a comprehensive answer.

This separation of concerns ensures that the computationally intensive
pre-processing happens only once per document, allowing for a swift and efficient
user experience during the query-response loop.

1. Setup Phase Architecture
This phase is the foundation of our system. It is responsible for taking a raw PDF,
understanding its contents (both text and tables), and storing them in a structured
way that our AI agents can later query.

Component Description Technologies

Streamlit
Frontend

A user-friendly web interface where users can upload PDF files and
interact with the system. Streamlit

Flask Backend

The central nervous system of the setup phase. It provides a
RESTful API endpoint for file uploads, communicates with all other
backend components, and manages the overall processing pipeline. Flask, Python

Temporary File
Storage

A transient storage location for the uploaded PDF file while it is
being processed. This can be a local directory on the server or a
cloud-based object store.

Local File
System,
Amazon S3,
Google Cloud
Storage

Central
ServiceRoom
Agent

While more active in the runtime phase, a lightweight version of this
agent can be used here to orchestrate the setup process, triggering
the PDF Extractor Agent and monitoring its progress.

Custom
Python
Class/Module

PDF Extractor
Agent

This specialized agent is responsible for parsing the raw PDF file. It
identifies and separates the textual content from the tabular data.

PyMuPDF,
pdfplumber

Text Chunker &
Vector DB
Manager

This component takes the extracted text, splits it into smaller,
semantically meaningful chunks, generates vector embeddings for
each chunk using a pre-trained language model, and then stores
these embeddings in a vector database.

LangChain,
Sentence-Tra
nsformers,
Pinecone

Table Extractor &
Schema
Inference Agent

This agent extracts tables from the PDF. It then infers the schema of
each table (column names and data types) and converts the table
into a structured format like a CSV or a database table.

Camelot,
Tabula-py,
Pandas

Table
Enhancement
Agent (Optional)

For tables lacking context (e.g., a table of financial figures without a
year), this agent can infer missing metadata by analyzing the
surrounding text in the original PDF.

Custom NLP
logic, LLM
calls

Pinecone Vector
DB

A managed vector database used to store the embeddings of the
text chunks. It enables efficient similarity-based retrieval. Pinecone

SQL Database
(e.g.,
PostgreSQL,
SQLite)

A relational database used to store the extracted and structured
tabular data. This allows for powerful and precise data retrieval
using SQL queries.

PostgreSQL,
SQLite,
MySQL

Redis
Cache(optional)

An in-memory data store used for caching frequently accessed data,
such as document processing status or extracted metadata, to
speed up repeated operations. Redis

Setup Phase: Workflow

1.​ PDF Upload: The user uploads a PDF file through the Streamlit frontend.
2.​ API Trigger: The frontend sends the file to the Flask backend via a POST

request to a dedicated /upload endpoint.
3.​ Temporary Storage: The Flask application saves the uploaded PDF to a

temporary storage location.
4.​ Orchestration Kick-off: The backend's Central ServiceRoom Agent is

notified of the new file and initiates the processing pipeline.
5.​ PDF Decomposition: The Central ServiceRoom Agent invokes the PDF

Extractor Agent. This agent scans the PDF and intelligently separates the
unstructured text from the structured tables.

6.​ Text Processing Pathway:
○​ The extracted text is passed to the Text Chunker & Vector DB.
○​ The text is segmented into smaller chunks.
○​ Vector embeddings are generated for each chunk.
○​ The chunks and their corresponding embeddings are stored in the

Pinecone Vector DB.
7.​ Table Processing Pathway:

○​ The identified tables are passed to the Table Extractor & Schema
Inference Agent.

○​ This agent extracts the tables, cleans them, infers their schemas, and
converts them into a structured format (e.g., a Pandas DataFrame).

○​ (Optional) The Table Enhancement Agent can be invoked to add
missing contextual information (like dates) to the table's metadata by
analyzing the text surrounding the table in the original document.

○​ The processed tables are then stored in a dedicated SQL Database.
Each table from the PDF becomes a table in this database.

8.​ Status Update & Caching: Redis is widely used as a fast, in-memory data
store for caching and quick status tracking. It’s ideal for storing lightweight,
rapidly-changing state like job or document statuses (processing, completed,
failed).It allows your frontend to instantly retrieve the status without hitting a
slower backend/database.​

9.​ Completion: Once both pathways are complete, the system marks the
document as "ready for querying."

2. Runtime Phase Architecture

This is where the magic happens. When a user asks a question, this multi-agent
system collaborates to understand the query, retrieve the most relevant information
(from text, tables, or both), and synthesize a precise and accurate answer.

Component Description Technologies

Streamlit Frontend
The user interface for submitting queries and
displaying the generated answers. Streamlit

Flask Backend
Provides the /query API endpoint and hosts the
multi-agent system. Flask, Python

Central ServiceRoom
Agent (Orchestrator)

The mastermind of the runtime phase. It
receives the user query, delegates tasks to
specialized agents, and orchestrates the
overall workflow to generate the final answer.

LangChain
Agents,
LlamaIndex Query
Engines

Text Retriever Agent

This agent specializes in finding relevant text
passages. It takes the user query, converts it
into a vector embedding, and queries the

Pinecone,
Sentence-Transfor
mers

Pinecone Vector DB to find the most similar
text chunks.

Table Retriever Agent

This agent identifies which tables in the SQL
database are relevant to the user's query. It
can do this by comparing the query to the table
associated metadata.

Custom logic,
LLM-based routing

SQL Executor
(NL-to-SQL Agent)

A powerful agent that translates a natural
language question into a precise SQL query. It
then executes this query on the SQL database
to fetch specific data points from the relevant
tables.

LangChain SQL
Agent, LlamaIndex
NL-to-SQL

Aggregator Agent

The final agent in the chain. It receives the
retrieved text snippets and the data from the
SQL queries. Its job is to synthesize all this
information into a coherent, human-readable
answer, citing the sources of the information.

Large Language
Model (e.g.,
GPT-4, Claude 3,
Gemini)

Monitoring & Logging
Agent

A crucial but often overlooked agent. It runs in
the background, logging all agent interactions,
query performance, and any errors. This is vital
for debugging, evaluating, and improving the
system over time.

ELK Stack
(Elasticsearch,
Logstash, Kibana),
Prometheus,
Grafana

Runtime Phase: Workflow

1.​ Query Submission: The user types a question into the Streamlit interface
and hits "submit."

2.​ API Call: The frontend sends the query to the Flask backend's /query
endpoint.

3.​ Orchestration Begins: The Central ServiceRoom Agent receives the query
and initiates the runtime workflow.

4.​ Hybrid Retrieval Strategy: The Central ServiceRoom Agent analyzes the
query to decide the best retrieval strategy.

○​ Conditional Triggering: The agent first determines if the query is
more likely to be answered by text, tables, or a combination. This can
be done using a smaller, faster language model to classify the query's
intent.

■​ For a query like "What were the company's net profits in 2023?",
the agent would prioritize the Table RAG path.

■​ For a query like "What is the company's mission statement?",
the Text RAG path would be prioritized.

■​ For a complex query like "Summarize the key financial highlights
and the CEO's comments on them," both pathways would be
triggered in parallel.

○​ Joint Triggering (Default for High Accuracy): For maximum
accuracy, the system can be configured to always trigger both the Text
and Table Retriever Agents simultaneously.

5.​ Text Retrieval Path:
○​ The Central ServiceRoom Agent passes the query to the Text

Retriever Agent.
○​ This agent vectorizes the query and retrieves the top-k most relevant

text chunks from the Pinecone Vector DB.
6.​ Table Retrieval Path:

○​ The Central ServiceRoom Agent passes the query to the Table
Retriever Agent.

○​ This agent identifies the most relevant table(s) in the SQL Database.
○​ The query and the schema of the selected table(s) are then passed to

the SQL Executor (NL-to-SQL Agent).
○​ The NL-to-SQL Agent converts the natural language query into a SQL

query (e.g., SELECT "Net Profit" FROM financial_summary
WHERE Year = 2023;).

○​ The SQL query is executed on the database, and the resulting rows of
data are returned.

7.​ Information Aggregation:
○​ The retrieved text chunks and the data from the SQL query are passed

to the Aggregator Agent.
8.​ Answer Generation and Synthesis:

○​ The Aggregator Agent (powered by a powerful LLM like Gemini or
GPT-4 or Claude 3) synthesizes the information from both sources.

○​ Maximizing Accuracy and Avoiding Redundancy:
■​ The agent is instructed to prioritize the structured data from the

tables for factual, numerical answers.
■​ The textual context is used to supplement and explain the

tabular data.
■​ The agent performs a final cross-reference to ensure

consistency and removes any redundant information before
generating the final answer.

9.​ Response Delivery: The final, synthesized answer is sent back to the Flask
backend, which then relays it to the Streamlit frontend to be displayed to the
user.

10.​Continuous Monitoring: Throughout this entire process, the Monitoring &
Logging Agent is capturing data on agent performance, retrieval times, and
the quality of the final output for ongoing system improvement.

Key Design Decision: Should table data be included in text chunks?

No, table data should NOT be duplicated in the text chunks. Here’s why this
separation is critical for a high-performance system:

●​ Avoiding Redundancy: Storing the same information in two places is
inefficient and increases the risk of inconsistencies.

●​ Leveraging a "Right Tool for the Job" Approach:
○​ Vector search (Pinecone) is excellent for semantic, similarity-based

searches on unstructured text. It's great for finding concepts,
summaries, and descriptive passages.

○​ SQL databases are purpose-built for precise, structured data retrieval.
They can perform exact matches, filtering, sorting, and aggregations
(like SUM, AVG, COUNT) with perfect accuracy, something vector search
struggles with.

●​ Clarity for the Agents: By keeping text and tables separate, we provide a
clean and unambiguous data landscape for our agents. The NL-to-SQL
Agent knows it only needs to deal with the structured database, and the
Text Retriever Agent knows it's searching over prose. This
specialization improves the reliability of each agent.

●​ Scalability and Maintenance: A separate SQL database for tables is easier
to manage, update, and scale independently of the vector database.

By architecting the system in this manner, we create a production-ready,
research-level RAG system that is not only powerful and accurate but also scalable,
maintainable, and easy to understand.

TEAM ROLES & TASK BREAKDOWN (Updated)

Overall Leads

Name Role Responsibility

Vijendir Sir Project Sponsor / Director
Final approvals, stakeholder alignment, architectural

guidance

Krishna

Kaushik
AI Systems Architect /

Technical Lead
End-to-end architecture, technical design decisions, agent

orchestration lead

 Core Team Roles

Role Responsibilities

Frontend Engineer Streamlit UI: PDF upload, query bar, answer rendering,
traceable answer breakdowns

Backend Engineer Flask endpoints, multi-agent orchestration, PDF parsing,
async handlers

Prompt Engineer Write, tune, and test all prompt templates for schema
extraction, SQL generation, summarization

Data/Infra
Engineer

Set up Pinecone, DuckDB, in-memory tables, schema store,
and all caching layers

LLM Integration
Engineer

Call Gemini/GPT via API for prompts, handle retries, latency
control, API failover

DevOps Engineer Dockerization, Gunicorn, Nginx, CI/CD setup, cloud deploy
to AWS/GCP

QA Engineer Unit & integration testing: agents, prompt outputs, SQL exec
results, latency thresholds

Development Pipeline

1. Development

 - Branching per module: feature/pdf-extract, feature/sql-prompt, etc.

 - Linters (black, flake8), type-checkers (mypy), formatters

2. Version Control & Code Review

 - PRs via GitHub → reviewed by Krishna/Vijendir sir

3. CI/CD Pipeline

 - Gunicorn + Nginx

 - Optional: - GitHub Actions: build, test, Dockerize → deploy to staging

4. Logging & Monitoring

 - Logs: `logging`, `Sentry`

 - Metrics: `Prometheus` hooks per agent

 - Dashboards: `Grafana` (latency, LLM call time, retrieval errors)

5. Deployment Guidelines

 - `Dockerfile` + `docker-compose.yaml` for local & staging

 - Use `.env` for all secrets, API keys, and config toggles

FULL CODE OUTLINE (Updated)

📁 Modular Project Structure

pdf_rag_backend/

├── app.py # ✅ All Flask routes in one file

├── agents/ # Core functional logic lives here

│ ├── pdf_extractor.py

│ ├── text_chunker.py

│ ├── embedder.py

│ ├── retriever.py

│ ├── table_extractor.py

│ ├── schema_agent.py

│ ├── sql_prompt_agent.py # LLM-prompted SQL generation

│ ├── sql_executor.py

│ ├── aggregator.py

│ └── answer_formatter.py

├── prompts/

│ └── prompt_templates.py # All system + user prompts here

├── utils/

│ ├── logger.py

│ └── observability.py # Prometheus decorators

├──.env

├── requirements.txt

├── Dockerfile

└── docker-compose.yaml

🧰 Suggested Libraries

USE LangGraph framework for building intelligent
workflows using graph-based logic, especially for LLMs
and tool-based agents.

Purpose Library

Backend
framework

Flask, Flask-CORS

PDF parsing PyMuPDF, pdfplumber, camelot

Chunking &
retrieval

langchain, pinecone-client

LLMs Gemini Pro, GPT-4

SQL MYSQL, DuckDB, pandasql

Observability Sentry, Prometheus, Grafana

DevOps Docker, Gunicorn, GitHub
Actions

Suggested Evaluation Metrics

Metric Description

Text Answer
Accuracy

Human-rated relevance or BLEU-style similarity to ground
truth

Table Query
Accuracy

SQL match correctness against reference answer

Latency Time from PDF upload → final response

Join Reasoning
Score

Correct fusion of table + text contexts

Failure Mode Audit % of questions where hallucination / blank / crash occurs

	Architecture Overview: A Two-Phase Approach
	1. Setup Phase Architecture
	Setup Phase: Workflow

	2. Runtime Phase Architecture
	This is where the magic happens. When a user asks a question, this multi-agent system collaborates to understand the query, retrieve the most relevant information (from text, tables, or both), and synthesize a precise and accurate answer.
	
	Runtime Phase: Workflow
	Key Design Decision: Should table data be included in text chunks?
	Development Pipeline

	FULL CODE OUTLINE (Updated)
	📁 Modular Project Structure
	🧰 Suggested Libraries
	Suggested Evaluation Metrics

