
Architecture Overview: A Two-Phase Approach 

To build a robust and scalable multi-agent RAG system, we will divide the 
architecture into two distinct phases: 

1.​ The Setup Phase (Ingestion & Processing): This phase handles the initial 
ingestion, processing, and storage of the uploaded PDF documents. Its 
primary goal is to prepare the data in an optimal format for efficient retrieval 
later. 

2.​ The Runtime Phase (Query & Response): This phase is activated when a 
user submits a query. It involves a sophisticated multi-agent system that 
orchestrates the retrieval of relevant information from the processed 
documents and generates a comprehensive answer. 

This separation of concerns ensures that the computationally intensive 
pre-processing happens only once per document, allowing for a swift and efficient 
user experience during the query-response loop. 

1. Setup Phase Architecture 
This phase is the foundation of our system. It is responsible for taking a raw PDF, 
understanding its contents (both text and tables), and storing them in a structured 
way that our AI agents can later query. 



 
Component Description Technologies 

Streamlit 
Frontend 

A user-friendly web interface where users can upload PDF files and 
interact with the system. Streamlit 

Flask Backend 

The central nervous system of the setup phase. It provides a 
RESTful API endpoint for file uploads, communicates with all other 
backend components, and manages the overall processing pipeline. Flask, Python 

Temporary File 
Storage 

A transient storage location for the uploaded PDF file while it is 
being processed. This can be a local directory on the server or a 
cloud-based object store. 

Local File 
System, 
Amazon S3, 
Google Cloud 
Storage 

Central 
ServiceRoom 
Agent 

While more active in the runtime phase, a lightweight version of this 
agent can be used here to orchestrate the setup process, triggering 
the PDF Extractor Agent and monitoring its progress. 

Custom 
Python 
Class/Module 

PDF Extractor 
Agent 

This specialized agent is responsible for parsing the raw PDF file. It 
identifies and separates the textual content from the tabular data. 

PyMuPDF, 
pdfplumber 

Text Chunker & 
Vector DB 
Manager 

This component takes the extracted text, splits it into smaller, 
semantically meaningful chunks, generates vector embeddings for 
each chunk using a pre-trained language model, and then stores 
these embeddings in a vector database. 

LangChain, 
Sentence-Tra
nsformers, 
Pinecone 



Table Extractor & 
Schema 
Inference Agent 

This agent extracts tables from the PDF. It then infers the schema of 
each table (column names and data types) and converts the table 
into a structured format like a CSV or a database table. 

Camelot, 
Tabula-py, 
Pandas 

Table 
Enhancement 
Agent (Optional) 

For tables lacking context (e.g., a table of financial figures without a 
year), this agent can infer missing metadata by analyzing the 
surrounding text in the original PDF. 

Custom NLP 
logic, LLM 
calls 

Pinecone Vector 
DB 

A managed vector database used to store the embeddings of the 
text chunks. It enables efficient similarity-based retrieval. Pinecone 

SQL Database 
(e.g., 
PostgreSQL, 
SQLite) 

A relational database used to store the extracted and structured 
tabular data. This allows for powerful and precise data retrieval 
using SQL queries. 

PostgreSQL, 
SQLite, 
MySQL 

Redis 
Cache(optional) 

An in-memory data store used for caching frequently accessed data, 
such as document processing status or extracted metadata, to 
speed up repeated operations. Redis 

Setup Phase: Workflow 

1.​ PDF Upload: The user uploads a PDF file through the Streamlit frontend. 
2.​ API Trigger: The frontend sends the file to the Flask backend via a POST 

request to a dedicated /upload endpoint. 
3.​ Temporary Storage: The Flask application saves the uploaded PDF to a 

temporary storage location. 
4.​ Orchestration Kick-off: The backend's Central ServiceRoom Agent is 

notified of the new file and initiates the processing pipeline. 
5.​ PDF Decomposition: The Central ServiceRoom Agent invokes the PDF 

Extractor Agent. This agent scans the PDF and intelligently separates the 
unstructured text from the structured tables. 

6.​ Text Processing Pathway: 
○​ The extracted text is passed to the Text Chunker & Vector DB. 
○​ The text is segmented into smaller chunks. 
○​ Vector embeddings are generated for each chunk. 
○​ The chunks and their corresponding embeddings are stored in the 

Pinecone Vector DB. 
7.​ Table Processing Pathway: 

○​ The identified tables are passed to the Table Extractor & Schema 
Inference Agent. 

○​ This agent extracts the tables, cleans them, infers their schemas, and 
converts them into a structured format (e.g., a Pandas DataFrame). 



○​ (Optional) The Table Enhancement Agent can be invoked to add 
missing contextual information (like dates) to the table's metadata by 
analyzing the text surrounding the table in the original document. 

○​ The processed tables are then stored in a dedicated SQL Database. 
Each table from the PDF becomes a table in this database. 

8.​ Status Update & Caching: Redis is widely used as a fast, in-memory data 
store for caching and quick status tracking. It’s ideal for storing lightweight, 
rapidly-changing state like job or document statuses (processing, completed, 
failed).It allows your frontend to instantly retrieve the status without hitting a 
slower backend/database.​
 

9.​ Completion: Once both pathways are complete, the system marks the 
document as "ready for querying." 

2. Runtime Phase Architecture 

This is where the magic happens. When a user asks a question, this multi-agent 
system collaborates to understand the query, retrieve the most relevant information 
(from text, tables, or both), and synthesize a precise and accurate answer. 



 
 
 
 
Component Description Technologies 

Streamlit Frontend 
The user interface for submitting queries and 
displaying the generated answers. Streamlit 

Flask Backend 
Provides the /query API endpoint and hosts the 
multi-agent system. Flask, Python 

Central ServiceRoom 
Agent (Orchestrator) 

The mastermind of the runtime phase. It 
receives the user query, delegates tasks to 
specialized agents, and orchestrates the 
overall workflow to generate the final answer. 

LangChain 
Agents, 
LlamaIndex Query 
Engines 

Text Retriever Agent 

This agent specializes in finding relevant text 
passages. It takes the user query, converts it 
into a vector embedding, and queries the 

Pinecone, 
Sentence-Transfor
mers 



Pinecone Vector DB to find the most similar 
text chunks. 

Table Retriever Agent 

This agent identifies which tables in the SQL 
database are relevant to the user's query. It 
can do this by comparing the query to the table 
associated metadata. 

Custom logic, 
LLM-based routing 

SQL Executor 
(NL-to-SQL Agent) 

A powerful agent that translates a natural 
language question into a precise SQL query. It 
then executes this query on the SQL database 
to fetch specific data points from the relevant 
tables. 

LangChain SQL 
Agent, LlamaIndex 
NL-to-SQL 

Aggregator Agent 

The final agent in the chain. It receives the 
retrieved text snippets and the data from the 
SQL queries. Its job is to synthesize all this 
information into a coherent, human-readable 
answer, citing the sources of the information. 

Large Language 
Model (e.g., 
GPT-4, Claude 3, 
Gemini) 

Monitoring & Logging 
Agent 

A crucial but often overlooked agent. It runs in 
the background, logging all agent interactions, 
query performance, and any errors. This is vital 
for debugging, evaluating, and improving the 
system over time. 

ELK Stack 
(Elasticsearch, 
Logstash, Kibana), 
Prometheus, 
Grafana 

 
 

 

Runtime Phase: Workflow 

1.​ Query Submission: The user types a question into the Streamlit interface 
and hits "submit." 

2.​ API Call: The frontend sends the query to the Flask backend's /query 
endpoint. 

3.​ Orchestration Begins: The Central ServiceRoom Agent receives the query 
and initiates the runtime workflow. 

4.​ Hybrid Retrieval Strategy: The Central ServiceRoom Agent analyzes the 
query to decide the best retrieval strategy. 

○​ Conditional Triggering: The agent first determines if the query is 
more likely to be answered by text, tables, or a combination. This can 
be done using a smaller, faster language model to classify the query's 
intent. 

■​ For a query like "What were the company's net profits in 2023?", 
the agent would prioritize the Table RAG path. 

■​ For a query like "What is the company's mission statement?", 
the Text RAG path would be prioritized. 



■​ For a complex query like "Summarize the key financial highlights 
and the CEO's comments on them," both pathways would be 
triggered in parallel. 

○​ Joint Triggering (Default for High Accuracy): For maximum 
accuracy, the system can be configured to always trigger both the Text 
and Table Retriever Agents simultaneously. 

5.​ Text Retrieval Path: 
○​ The Central ServiceRoom Agent passes the query to the Text 

Retriever Agent. 
○​ This agent vectorizes the query and retrieves the top-k most relevant 

text chunks from the Pinecone Vector DB. 
6.​ Table Retrieval Path: 

○​ The Central ServiceRoom Agent passes the query to the Table 
Retriever Agent. 

○​ This agent identifies the most relevant table(s) in the SQL Database. 
○​ The query and the schema of the selected table(s) are then passed to 

the SQL Executor (NL-to-SQL Agent). 
○​ The NL-to-SQL Agent converts the natural language query into a SQL 

query (e.g., SELECT "Net Profit" FROM financial_summary 
WHERE Year = 2023;). 

○​ The SQL query is executed on the database, and the resulting rows of 
data are returned. 

7.​ Information Aggregation: 
○​ The retrieved text chunks and the data from the SQL query are passed 

to the Aggregator Agent. 
8.​ Answer Generation and Synthesis: 

○​ The Aggregator Agent (powered by a powerful LLM like Gemini or 
GPT-4 or Claude 3) synthesizes the information from both sources. 

○​ Maximizing Accuracy and Avoiding Redundancy: 
■​ The agent is instructed to prioritize the structured data from the 

tables for factual, numerical answers. 
■​ The textual context is used to supplement and explain the 

tabular data. 
■​ The agent performs a final cross-reference to ensure 

consistency and removes any redundant information before 
generating the final answer. 

9.​ Response Delivery: The final, synthesized answer is sent back to the Flask 
backend, which then relays it to the Streamlit frontend to be displayed to the 
user. 

10.​Continuous Monitoring: Throughout this entire process, the Monitoring & 
Logging Agent is capturing data on agent performance, retrieval times, and 
the quality of the final output for ongoing system improvement. 



Key Design Decision: Should table data be included in text chunks? 

No, table data should NOT be duplicated in the text chunks. Here’s why this 
separation is critical for a high-performance system: 

●​ Avoiding Redundancy: Storing the same information in two places is 
inefficient and increases the risk of inconsistencies. 

●​ Leveraging a "Right Tool for the Job" Approach: 
○​ Vector search (Pinecone) is excellent for semantic, similarity-based 

searches on unstructured text. It's great for finding concepts, 
summaries, and descriptive passages. 

○​ SQL databases are purpose-built for precise, structured data retrieval. 
They can perform exact matches, filtering, sorting, and aggregations 
(like SUM, AVG, COUNT) with perfect accuracy, something vector search 
struggles with. 

●​ Clarity for the Agents: By keeping text and tables separate, we provide a 
clean and unambiguous data landscape for our agents. The NL-to-SQL 
Agent knows it only needs to deal with the structured database, and the 
Text Retriever Agent knows it's searching over prose. This 
specialization improves the reliability of each agent. 

●​ Scalability and Maintenance: A separate SQL database for tables is easier 
to manage, update, and scale independently of the vector database. 

By architecting the system in this manner, we create a production-ready, 
research-level RAG system that is not only powerful and accurate but also scalable, 
maintainable, and easy to understand. 

TEAM ROLES & TASK BREAKDOWN (Updated) 

 

Overall Leads 

Name Role Responsibility 

Vijendir Sir Project Sponsor / Director 
Final approvals, stakeholder alignment, architectural 

guidance 

Krishna 

Kaushik 
AI Systems Architect / 

Technical Lead 
End-to-end architecture, technical design decisions, agent 

orchestration lead 



 Core Team Roles 

 

Role Responsibilities 

Frontend Engineer Streamlit UI: PDF upload, query bar, answer rendering, 
traceable answer breakdowns 

Backend Engineer Flask endpoints, multi-agent orchestration, PDF parsing, 
async handlers 

Prompt Engineer Write, tune, and test all prompt templates for schema 
extraction, SQL generation, summarization 

Data/Infra 
Engineer 

Set up Pinecone, DuckDB, in-memory tables, schema store, 
and all caching layers 

LLM Integration 
Engineer 

Call Gemini/GPT via API for prompts, handle retries, latency 
control, API failover 

DevOps Engineer Dockerization, Gunicorn, Nginx, CI/CD setup, cloud deploy 
to AWS/GCP 

QA Engineer Unit & integration testing: agents, prompt outputs, SQL exec 
results, latency thresholds 

Development Pipeline 

 

1. Development 

   - Branching per module: feature/pdf-extract, feature/sql-prompt, etc. 



   - Linters (black, flake8), type-checkers (mypy), formatters 

 

2. Version Control & Code Review 

   - PRs via GitHub → reviewed by Krishna/Vijendir sir 

 

3. CI/CD Pipeline 

   - Gunicorn + Nginx 

   - Optional: - GitHub Actions: build, test, Dockerize → deploy to staging 

 

4. Logging & Monitoring 

   - Logs: `logging`, `Sentry` 

   - Metrics: `Prometheus` hooks per agent 

   - Dashboards: `Grafana` (latency, LLM call time, retrieval errors) 

 

5. Deployment Guidelines 

   - `Dockerfile` + `docker-compose.yaml` for local & staging 

   - Use `.env` for all secrets, API keys, and config toggles 

FULL CODE OUTLINE (Updated) 

📁 Modular Project Structure 

pdf_rag_backend/ 

├── app.py                      # ✅ All Flask routes in one file 

├── agents/                     # Core functional logic lives here 

│   ├── pdf_extractor.py 

│   ├── text_chunker.py 



│   ├── embedder.py 

│   ├── retriever.py 

│   ├── table_extractor.py 

│   ├── schema_agent.py 

│   ├── sql_prompt_agent.py     # LLM-prompted SQL generation 

│   ├── sql_executor.py 

│   ├── aggregator.py 

│   └── answer_formatter.py 

├── prompts/ 

│   └── prompt_templates.py     # All system + user prompts here 

├── utils/ 

│   ├── logger.py 

│   └── observability.py        # Prometheus decorators 

├──.env 

├── requirements.txt 

├── Dockerfile 

└── docker-compose.yaml 

🧰 Suggested Libraries 

USE LangGraph framework for building intelligent 
workflows using graph-based logic, especially for LLMs 
and tool-based agents. 

Purpose Library 

Backend 
framework 

Flask, Flask-CORS 



PDF parsing PyMuPDF, pdfplumber, camelot 

Chunking & 
retrieval 

langchain, pinecone-client 

LLMs Gemini Pro, GPT-4 

SQL  MYSQL, DuckDB, pandasql 

Observability Sentry, Prometheus, Grafana 

DevOps Docker, Gunicorn, GitHub 
Actions 

Suggested Evaluation Metrics 

 

Metric Description 

Text Answer 
Accuracy 

Human-rated relevance or BLEU-style similarity to ground 
truth 

Table Query 
Accuracy 

SQL match correctness against reference answer 

Latency Time from PDF upload → final response 



Join Reasoning 
Score 

Correct fusion of table + text contexts 

Failure Mode Audit % of questions where hallucination / blank / crash occurs 
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