- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

(Effective Alternative Secondary Education)

MATHEMATICS III

MODULE 8

Geometry of Shape and Size

BUREAU OF SECONDARY EDUCATION

Department of Education DepEd Complex, Meralco Avenue, Pasig City

Geometry of Shape and Size

What this module is about

This module is about volume of solids. The volume of a solid is the number of cubic units contained in the solid. If measures are given in centimeter, the volume is stated in cubic cm, written as cm³.

What you are expected to learn

This module is designed for you to:

- 1. define volume of solids.
- 2. find the volume of solids such as:
 - cube
 - prism (rectangular, triangular)
 - pyramid (square, rectangular, triangular)
 - cylinder
 - cone
 - sphere
- 3. solve problems involving volume of solids.

How much do you know

Find the volume of each solid:

- 1. a cube with side (s) = 2.4 m
- 2. a cylinder with h = 20 cm, r = 22 cm.

- 3. a rectangular prism with I = 25 cm, w = 17 cm, h = 30 cm
- 4. a square pyramid with s = 5 m, h = 6 m.
- 5. a cone with r = 2 cm, h = 6 cm.
- 6. a triangular prism with height 10 cm, base (a right triangle with sides 3, 4 and 5 cm and the right angle between shorter sides).
- 7. a ball with radius of 17 cm (use = 3.14)
- 8. a triangular pyramid with b = 4 cm, h = 8.2 cm (altitude of the base), h = 7 cm (height of the pyramid).
- 9. a rectangular pyramid with I = 6 cm, w = 4.3 cm, h = 8 cm (height of the pyramid)
- 10. a cylindrical tank is 5.3 meters high. If the radius of its base is 2.8 meters, what is its volume?
- 11. Find the volume of a rectangular prism which is 46 cm long, 37 cm wide and 25 cm high.
- 12. Find the volume of a pyramid with a square base if the length of the sides of the base is 2.4 m and the height of the triangular face is 3.5 m.

2

- 13. cube with edge of 6° cm.
- 14. cylinder with radius of base 8.7 cm and height 12 cm.
- 15. rectangular prism with base 8 m by 10 m by 15 m.

What you will do

Lesson 1

Finding the Volume of a Cube, Prism and Pyramid

One problem with rooms that have high ceilings is that they are hard to heat and cool. The amount of air in a room determines the heating or cooling power needed. To find the amount of air in a room, you need to find the volume of the room.

In finding volume of solids, you have to consider the area of a face and height of the solid. If the base is triangular, you have to make use of the area of a triangle, if rectangular, make use of the area of a rectangle and so on.

The next examples will help you to understand more about volume or the amount of space in three – dimensional figures.

Volume of a cube

The volume V of a cube with edge e is the cube of e. That is,

$$V = e^3$$
.

Example:

Find the volume of a cube with edge (e) of 3 cm.

Figure:

Solution:

$$V = e^{3}$$

Substituting e by 3 cm:

$$V = 3^3$$

$$V = 27 \text{ cm}^3$$

Volume of Prism

The volume V of a rectangular prism is the product of its altitude h, the length I and the width w of the base. That is.

$$V = Iwh.$$

Example:

Find the volume of a rectangular prism whose length is 7.5 cm, width is 4.3 cm and thickness is 5.1 cm.

Figure:

Solution:

$$V = Iwh$$

$$V = (7.5 \text{ cm})(4.3 \text{ cm})(5.1 \text{ cm})$$

$$V = 164.475 \text{ cm}^3$$

The volume of a prism can also be expressed in terms of area of the base, B.

The volume V of a prism is the product of its altitude h and area B of the base. That is,

$$V = Bh.$$

Example:

Find the volume of a triangular prism whose dimensions is given in the figure below.

Solution:

Let B = area of the triangular base

$$B = \frac{1}{2} \text{ bh}$$

$$= \frac{1}{2} (4.5 \text{ cm})(3.9 \text{ cm})$$

$$B = 8.775 \text{ cm}^2$$

Finding the volume of the prism:

$$V = Bh$$

= 8.775 cm² (2.8 cm)

 $= 24.57 \text{ cm}^3$

Volume of Pyramids

Consider a pyramid and a prism having equal altitudes and bases with equal areas. If the pyramid is filled with water or sand and its contents poured into a prism, only a third of the prism will be filled. Thus the volume of a pyramid

is 3 the valuma of the priem

The volume V of a pyramid is one third the product of its altitude h and the area B of its base. That is, V = EMBED Equation.3 Bh.

Example:

1. Find the volume of the rectangular pyramid with the given dimensions.

Figure:

Solution:

Let B = the area of the rectangular base

$$B = Iw$$

= (9 cm)(4 cm)

$$= 36 \text{ cm}^2$$

Finding the volume V:

$$V = \frac{1}{3} Bh$$
= $\frac{1}{3}$ (36 cm²) (6 cm)
= 72 cm³

2. Find the volume of a square pyramid with a side of the base as 4 cm and the height of a pyramid as 6 cm.

Figure:

Solution:

Let B = area of the square base
=
$$s^2$$

= $(4 \text{ cm})^2$
B = 16 cm^2

Finding the volume of the pyramid:

$$V = \frac{1}{3} Bh$$
= $\frac{1}{3}$ (16 cm²)(6 cm)
= 32 cm³

3. Find the volume of a triangular pyramid with the given dimensions.

Figure:

Solution:

Let B = area of the triangular base

B =
$$\frac{1}{2}$$
 bh
= $\frac{1}{2}$ (20 cm)(5 cm)

$$B = 50 \text{ cm}^2$$

Finding the volume of the pyramid:

$$V = Bh$$

= (50 cm²)(8cm)
 $V = 400 \text{ cm}^3$

Try this out

Find the volume of each solid:

1.

2.

Find the volume of each pyramid:

6.

7. What is the volume of a cardboard box that is 9 m long, 6 m wide, and 3 m high?

8. Find the volume of a cube with side of 8 cm.

9. Find the volume of a triangular chocolate box.

10. Find the volume of a camping tent in a square pyramid shape with a side of the base as 5 cm and the height of a triangle as 7 cm.

11. A pyramid has a rectangular base whose length and width are 15.5 cm and 3.3 cm respectively. The height of the pyramid is 4 cm. Find its volume.

12. Find the volume of a tetra pack juice drink in triangular pyramid shape with the given dimensions.

Lesson 2

Finding the Volume of a Cylinder, Cone and Sphere

A cylinder has 2 congruent circular bases. The volume of a cylinder is just like finding the volume of a prism.

Figure:

Volume of a Cylinder

The volume V of a circular cylinder is the product of the altitude h and the area B of the base. That is,

 $V = Bh \text{ or } V = EMBED \text{ Equation.} 3 \text{ } r^2h.$

Example:

Find the volume of a cylinder which has a radius of 8 cm and a height of 15 cm. (Use 3.14 for $\,^{\pi}$)

Solution:

Let B = area of the circular base
=
$$\pi$$
 r²
= (3.14)(8 cm)
B = 200.96 cm²

Finding the volume of the cylinder:

$$V = Bh$$

= (200.96 cm²)(15 cm)
= 3014.4 cm³

Volume of a Cone

If a cone is filled with water or sand, and then its content is poured into the cylinder (the cone and cylinder have equal areas) only a third of the cylinder will

be filled. This shows that the volume of a cone is $\frac{1}{3}$ that of the cylinder.

h

r

The volume V of a circular cone is one third the product of the altitude h and the area B of the base. That is,

V = EMBED Equation.3 Bh or V = EMBED Equation.3 EMBED Equation.3 r²h

Example:

Find the volume of a cone if the radius of its base is 4.5 cm and its height is 8.75 cm (Use $\,^{\pi}$ = 3.14)

Solution:

$$V = \frac{1}{3} \pi r^{2}h$$

$$= \frac{1}{3} (3.14)(4.5 \text{ cm})^{2}(8.75 \text{ cm})$$

$$V = 185.46 \text{ cm}^{3}$$

Volume of a Sphere

Fill a cylinder with water. Push the sphere into the cylinder and determine the amount of water displaced. About $\frac{2}{3}$ of the water will be displaced, so the volume of the sphere is $\frac{2}{3}$ that of the cylinder.

Figure:

In the figure, the height of the cylinder is equal to the diameter of the sphere, the volume of the cylinder will now be equal to 2 π r³. Since the volume

of the sphere is $\frac{2}{3}$ that of the cylinder and the height of the cylinder = 2r, then $V = \frac{2}{3} (2 \pi r^3) = \frac{4}{3} \pi r^3$.

The volume V of a sphere = EMBED Equation.3 EMBED Equation.3 r³

Example:

What is the volume of a ball with radius equal to 7.8 cm?

Solution:

$$V = \frac{\frac{4}{3}}{3} \pi r^{3}$$

$$= \frac{\frac{4}{3}}{3} (3.14)(7.8 \text{ cm})^{3}$$

$$= 1,986.79 \text{ cm}^{3}$$

Try this out

Find the volume of each solid.

1.

2.

3.

4.

5.

6.

7. A cylindrical water tank is 6.2 meters high. If the radius of its base is 1.8 m, what is its volume.

8. The radius of a ball is 5.2 cm. What is its volume?

9. Find the volume of a conic solid whose radius is 6.3 cm and its height is 13.5 cm.

10. Find the volume of a spherical tank whose radius is 1.7 meters.

11. A cone with a diameter of 12 cm and height of 6 cm. Find its volume.

12. A can of milk has a diameter of 12 cm and a height of 17.3 cm. Find its volume.

The volume of a three dimensional figure is the amount of space it encloses.

The volume V of a cube with edge e is the cube of e. That is,

$$V = e^{3}$$
.

The volume V of a rectangular prism is the product of its altitude h, the length I and the width w of the base. That is,

$$V = lwh$$
.

The volume of a prism can be expressed in terms of area of the base, B.

The volume V of a prism is the product of its altitude h and area B of the base. That is,

$$V = Bh.$$

The volume V of a pyramid is one third the product of its altitude h and the area B of its base. That is,

$$V = \frac{1}{3} Bh$$

The volume V of a circular cylinder is the product of the altitude h and the area B of the base. That is,

$$V = Bh \text{ or } V = \pi r^2 h$$
.

The volume V of a circular cone is one third the product of the altitude h and the area B of the base. That is,

$$V = \frac{1}{3} Bh \text{ or } V = \frac{1}{3} \pi r^2 h$$

The volume V of a sphere = $\frac{4}{3} \pi r^3$

What have you learned

Find the volume of each solid:

- 1. A cube with edge (e) = 6.3 cm.
- 2. A cylinder with h = 15 cm, r = 7.1 cm.
- 3. A rectangular prism with I = 18 cm, w = 7 cm, h = 5 cm.
- 4. A square pyramid with s = 8.5 cm, h = 6 cm.
- 5. A cone with r = 3.8 cm, h = 7.2 cm.
- 6. A triangular prism with height 16 cm, base (a right triangle with sides 3, 4 and 5 cm and the right angle between shorter sides).
- 7. A ball with radius of 13 cm.
- 8. A triangular pyramid with b = 5 cm, h = 7.2 cm (altitude of the base), h = 8 cm (height of the pyramid).
 - 9. A rectangular pyramid with I = 9 cm, w = 6.3 cm, h = 8 cm (height of the pyramid).
 - 10. A cylindrical tank is 5.4 m high. If the radius of its base is 4.9 m, what is its volume?
 - 11. Find the volume of a rectangular prism which is 42 cm long, 38 cm wide and 22 cm high.
 - 12. Find the volume of a pyramid with a square base if the length of the sides of the base is 3.6 m and a height of 1.8 m.
 - 13. Cube with edge 10.5 cm.
 - 14. Cylinder with radius of base 9.7 cm and height of 12 cm.
 - 15. Rectangular prism with base 12 m by 14.6 m and height of 9.1 m.

How much do you know

- 1. 13.82 m³
- 2. $30,395.20 \text{ cm}^3 \text{ or } 9,680 \ \square \text{ cm}^3$
- 3. 12,750 cm³
- 4. 50 m³
- 6. 60 cm³
- 7. 20,569 cm³
- 8. 38.27 cm³
- 9. 68.8 cm³
- 11. 42,550 cm³
- 12.6.31 m³
- 13.296.30 cm³
- 14.2,851.99 cm³ or 908.28 cm³
- 15.1,200 m³

Try this out Lesson 1

- 1. 216 cm³
- 2. 648 mm³
- 3. 33.75 cm³
- 4. 1,250 cm³
- 5. 28.58 m³
- 6. 120.74 cm³
- 7. 162 m³
- 8. 512 cm³
- 9. 42 cm³

- 10.112.46 cm³
- 11. 68.2 cm³
- 12.125 cm³ (?)

Lesson 2

- 1. 158.69 cm³ or 50.54 ∏cm³
- 2. $659.25 \text{ cm}^3 \text{ or } 209.952 \ \square \text{ cm}^3$
- 3. $462.01 \text{ cm}^3 \text{ or } 147.136 \prod \text{ cm}^3$
- 4. $20.57 \text{ cm}^3 \text{ or } 6.55067 \ \square \text{ cm}^3$
- 5. $48.07 \text{ cm}^3 \text{ or } 15.309 \, \square \text{ cm}^3$
- 6. $15.92 \text{ m}^3 \text{ or } 5.07 \prod \text{ cm}^3$
- 7. $180.42 \text{ cm}^3 \text{ or } 57.46 \prod \text{ cm}^3$
- 8. $2,393.88 \text{ cm}^3 \text{ or } 762.38267 \ \square \text{ cm}^3$
- 9. 560.82 cm³ or 178.605∏ cm³
- 10. 20.57 m^3 or 6.55067 $\prod \text{m}^3$
- 11. 226.08 cm 3 72 \prod cm 3
- 12. 1,955.59 cm 3 or 622.8 \prod cm 3

What have you learned

- 1. 250.047 cm³
- 2. 2.374.311 cm³
- 3. 630 cm³
- 4. 144.5 cm³
- 5. 108.82 cm³
- 6. 96 cm³
- 7. 9,198.11 cm³
- 8. 48 cm³
- 9. 151.2 cm³
- 10. 407.11356 m³
- 11. 35,112 cm³

- 12. 7.776 m³
- 13. 1,157.625 cm³
- 14. 3,545.3112 cm³
- 15. 1,594.32 m³