
KEP- 4680: DRA Pod Device Health -
Detailed Implementation Design
Last Updated: May 12, 2025

 John-Paul Sassine

PR: https://github.com/kubernetes/kubernetes/pull/130606

KEP:
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/4680-add-reso
urce-health-to-pod-status/README.md

https://github.com/kubernetes/enhancements/pull/5302

1. Overview of DRA Health Monitoring
within KEP-4680
This document outlines the implementation design for adding Dynamic Resource
Allocation (DRA) device health status to the PodStatus, as proposed in KEP-4680. The
primary goal is to allow Kubelet and external observers to determine if devices allocated
to a Pod via DRA are healthy, aiding in troubleshooting and potentially enabling
automated remediation (e.g., rescheduling).

This implementation does not automatically trigger rescheduling; that responsibility
remains external, potentially using this status information. This design aims for
integration with existing Kubelet infra.

2. High-Level Architectural Approach for
DRA Health

1.​ Optional gRPC Stream: Defining a new, optional gRPC service (NodeHealth)
within a dedicated, new API group (dra-health/v1alpha1) that DRA plugins
can implement. This DRA plugin exposes a server-streaming RPC
(WatchResources) so it can proactively send health updates for its managed
devices to Kubelet.

2.​ Health Information Cache: Kubelet’s DRA Manager maintains a persistent cache

mailto:jpsassine@google.com
https://github.com/kubernetes/kubernetes/pull/130606
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/4680-add-resource-health-to-pod-status/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/4680-add-resource-health-to-pod-status/README.md
https://github.com/kubernetes/enhancements/pull/5302

(healthInfoCache) storing the latest known health status (Healthy, Unhealthy,
Unknown) and LastUpdated timestamp for each device, keyed by driver name. The
cache handles state reconciliation and timeouts for stale data, and persists across
Kubelet restarts.

3.​ Kubelet Integration: Kubelet's DRA Manager (pkg/kubelet/cm/dra/manager.go)
acts as the gRPC client. Upon plugin registration, it attempts to initiate the
WatchResources stream. If successful, it consumes the health stream, updates the
healthInfoCache, identifies which Pods are affected by reported health changes,
and signals the Kubelet status manager via a dedicated update channel.

4.​ Update Channel Aggregation: The Container Manager
(pkg/kubelet/container_manager_linux.go) merges update signals from
the DRA Manager’s update channel(if the DRA feature is enabled) and the Device
Manager’s existing update channel into a single channel (Updates()) monitored
by the Kubelet status manager.

5.​ PodStatus Update: Kubelet's pod synchronization logic, upon receiving the update
signal, or on any other Pod updates, calls the Container Manager’s
UpdateAllocatedResourcesStatus. This calls the DRA Manager’s
UpdateAllocatedResourcesStatus method, which reads the current health status for
the Pod’s allocated devices from healthInfoCache and populates the
pod.Status.ContainerStatuses[].AllocatedResourcesStatus field with the correct
health information.

Note: kubelet will ONLY currently use this health information to update the Pod
Status. DRA plugin will be responsible to update resource slices to taint
resources or mark them unhealthy in some other way.

3. Core Components and Logic for DRA
Health
3.1. DRA Health Information Cache
(pkg/kubelet/cm/dra/healthinfo.go)
●​ Purpose: To maintain the source of truth for device health within Kubelet,

reconciling reported data and handling missing/stale information.
●​ Data Structure:

○​ healthInfoCache: Holds HealthInfo *state.DevicesHealthMap and stateFile
string.

○​ state.DevicesHealthMap: map[string]DriverHealthState (key is driver name).
○​ state.DriverHealthState: Contains Devices []DeviceHealth.
○​ state.DeviceHealth: Contains PoolName string, DeviceName string, Health

state.DeviceHealthString, LastUpdated time.Time.
○​ state.DeviceHealthString: type DeviceHealthString string(Values: “Healthy”,

“Unhealthy”, “Unknown”).
●​ Key Features & Functions:

○​ newHealthInfoCache(stateFile): Initializes cache, loads from checkpoint file if
exists. Handles file-not-found gracefully.

○​ updateHealthInfo(driverName, devices):
■​ Performs full-state reconciliation for the given driverName based on the list

of devices reported by the plugin in a single WatchResourcesResponse.
■​ Updates LastUpdated timestamps for all devices present in the devices list.
■​ Marks devices not present in the update as "Unknown" if

time.Since(LastUpdated) > healthTimeout. Existing health status is
preserved if within the timeout.

■​ Returns (changedDevices []state.DeviceHealth, changed bool, err error):
changedDevices contains devices whose Health field was modified in this
cycle (newly added, health changed, or timed out to Unknown); changed is
true if any change occurred (including timestamp updates).

○​ getHealthInfo(driverName, poolName, deviceName): Returns current health,
considering healthTimeout.

○​ clearDriver(driverName): Removes all data for a driver (used on
deregistration/stream end).

○​ saveToCheckpoint() / loadFromCheckpoint(): Handles persistence via JSON
marshalling. saveToCheckpoint automatically called by updateHealthInfo &
clearDriver

○​ healthTimeout: Constant (e.g., 30s) for marking stale devices "Unknown". If
Kubelet doesn't receive an update containing a specific device within this
duration, its health will be reported as "Unknown" in PodStatus by
getHealthInfo.

●​ Handling Timeouts and 'Unknown' State
○​ Implicit Timeout Handling: The transition of a device's health to "Unknown"

due to a timeout is primarily handled by the getHealthInfo function. When
UpdateAllocatedResourcesStatus requests the health of a device, getHealthInfo
checks if time.Since(device.LastUpdated) > healthTimeout. If true, it returns
"Unknown" regardless of the previously cached health state.

○​ Reconciliation during updateHealthInfo: When updateHealthInfo processes
a new list of devices from a plugin for a given driver:

■​ For devices present in the new list, their LastUpdated timestamp is
refreshed, and their health is updated.

■​ For devices that were previously known for that driver but are not present in
the new list, updateHealthInfo also checks their LastUpdated timestamp. If
time.Since(existingDevice.LastUpdated) > healthTimeout, their cached
Health is explicitly set to "Unknown", and they are included in
changedDevices. This ensures the cache actively reflects timeout-induced
"Unknown" states for devices no longer reported by the plugin.

○​ No Separate Expiration Worker: A separate background worker to periodically
scan the cache for expired entries and trigger Pod status updates is not
required with this design.
■​ The "Unknown" status due to timeout is determined on-demand by

getHealthInfo whenever PodStatus is being computed.
■​ Kubelet's existing status manager already triggers PodStatus updates for

various reasons (Pod events, changes from other managers, periodic
resyncs). When these updates occur, UpdateAllocatedResourcesStatus will
call getHealthInfo, which will naturally reflect any timeouts.

■​ If a plugin stops sending updates for a device, the healthInfoCache still
retains the last known health and timestamp. getHealthInfo will report this
health until healthTimeout is exceeded, after which it will report "Unknown".
The next regular Pod status update will then reflect this change.

■​ If a plugin stops sending updates for all its devices (e.g., plugin crashes and
its stream ends), HandleWatchResourcesStream calls clearDriver, removing
all entries. Subsequent calls to getHealthInfo for these devices will return
"Unknown".

3.2. gRPC API for DRA Device Health

●​ gRPC API
(staging/src/k8s.io/kubelet/pkg/apis/dra-health/v1alp
ha1/api.proto):
○​ Defines NodeHealth service with rpc

WatchResources(WatchResourcesRequest) returns (stream
WatchResourcesResponse).

○​ DeviceHealth: message includes pool_name, device_name, health,
last_updated (unix timestamp), and potentially resource_name (optional, e.g.,
<driver>/<pool>/<device>).

○​ Kept separate from core DRA API (Node service) to signify optionality.
■​ If it is not implemented then plugin registration would continue and

if device health is ever queried(eg during a call to
UpdateAllocatedResourcesStatus) the devices would return state
“Unknown”

3.3. Kubelet DRA Plugin Client and Registration for
Health Monitoring

●​ Plugin Client Logic (pkg/kubelet/cm/dra/plugin/plugin.go):
○​ Plugin struct: Holds healthClient (drahealthv1alpha1.NodeHealthClient),

healthStreamCtx (context.Context), healthStreamCancel (context.CancelFunc).
○​ getOrCreateGRPCConn(): Initializes healthClient after gRPC connection

establishment.
○​ WatchResources(ctx): Method called by registration handler. Initiates the

gRPC stream via healthClient.WatchResources.
○​ SetHealthStream, HealthStreamCancel: Manages the context/cancel specific

to the health stream routine.

●​ Registration
(pkg/kubelet/cm/dra/plugin/registration.go):

●​ RegistrationHandler: Holds streamHandler StreamHandler.
●​ NewRegistrationHandler: Accepts StreamHandler
●​ RegisterPlugin:

○​ Attempts pluginInstance.WatchResources.
○​ If Unimplemented error: Logs info(plugin doesnt support health)

continues registration without health monitoring. PodStatus will not be
populated for this driver’s resources.

○​ On Success: store context/cancel using
pluginInstance.SetHealthStream(), start background goroutine: go
h.streamHandler.HandleWatchResourcesStream(streamCtx, stream,
pluginName) (calls via interface).

○​ On Replacement: Calls oldPlugin.HealthStreamCancel() to stop the
previous stream handler.

Deregistration (pkg/kubelet/cm/dra/plugin/registration.go):
○​ DeRegisterPlugin: Calls p.HealthStreamCancel() to stop the stream handler

goroutine and cleans up plugin resources (context, connection).

3.4. Kubelet DRA Manager and Container Manager
Integration

●​ DRA Manager (pkg/kubelet/cm/dra/manager.go):
○​ ManagerImpl: Implements plugin.StreamHandler. Holds healthInfoCache,

healthInfoMutex, update chan resourceupdates.Update.
○​ HandleWatchResourcesStream(ctx context.Context, stream

drahealthv1alpha1.NodeHealth_WatchResourcesClient, pluginName string):
■​ Goroutine runs per plugin. Receives health updates, calls

healthInfoCache.updateHealthInfo. If devices changed state, finds affected
Pod UIDs from claimInfoCache and sends UIDs to update channel
(non-blocking). Logs errors/cancellation and exits.

■​ Defer func added which cleans the cache whenever the function exits to
properly clean the health cache.

○​ Updates() <-chan resourceupdates.Update: Implemented method that
returns the m.update channel.

○​ UpdateAllocatedResourcesStatus(pod, status):
■​ Reads healthInfoCache, formats v1.ResourceStatus (with Name = claim

name, Resources = slice of v1.ResourceHealth for each device with ID and
Health) and updates the input PodStatus.

○​ GetWatcherHandler(): Instantiates plugin.NewRegistrationHandler,
passing m (the ManagerImpl instance) as the plugin.StreamHandler

●​ Container Manager
(pkg/kubelet/cm/container_manager_linux.go):
○​ Updates(): Merges the channel returned by m.draManager.Updates() with the

deviceManager's update channel into a single output channel consumed by the
main Kubelet sync loop.

○​ UpdateAllocatedResourcesStatus(): Calls device manager’s update, then
DRA manager’s update (guarded by feature gate).

4. Testing Strategy
●​ Unit Tests: Focus on healthinfo.go (reconciliation, timeouts, persistence),

registration.go (stream start/cancel logic, error handling), manager.go
(HandleWatchResourcesStream's pod finding and channel sending logic).

●​ [WIP] E2E Test (test/e2e_node/dra_test.go):

Discussion:

-​ Is the pod marked unhealthy when the devices are unhealthy, how does
this work?

	KEP- 4680: DRA Pod Device Health - Detailed Implementation Design
	Last Updated: May 12, 2025
	1. Overview of DRA Health Monitoring within KEP-4680
	2. High-Level Architectural Approach for DRA Health
	3. Core Components and Logic for DRA Health
	3.1. DRA Health Information Cache (pkg/kubelet/cm/dra/healthinfo.go)
	3.2. gRPC API for DRA Device Health
	●​gRPC API (staging/src/k8s.io/kubelet/pkg/apis/dra-health/v1alpha1/api.proto):

	3.3. Kubelet DRA Plugin Client and Registration for Health Monitoring
	●​Plugin Client Logic (pkg/kubelet/cm/dra/plugin/plugin.go):
	●​Registration (pkg/kubelet/cm/dra/plugin/registration.go):
	Deregistration (pkg/kubelet/cm/dra/plugin/registration.go):

	3.4. Kubelet DRA Manager and Container Manager Integration
	●​DRA Manager (pkg/kubelet/cm/dra/manager.go):
	●​Container Manager (pkg/kubelet/cm/container_manager_linux.go):

	4. Testing Strategy

