BLURB: Learn the differences between monolithic and microservice architectures, their
pros and cons, and the complexities of scaling each.

Monoliths vs. Microservices: Differences, Pros &
Cons, and Choosing the Right Architecture

monolithic architecture microservices architecture

user
interface
data
access
layer

business
logic

ervice micros:
<¢E§erv1ce>

database

‘ database | | database | | database | Idatahase I | database |

)x:m:(cortex

Monoliths vs. microservices
Monolithic architectures operate as a single unit, where all of the application’s
functionality lives within the same codebase. Microservice architectures break

components into individual services, each of which performs a specific function of
the application.

What is a monolithic architecture?

Pros of monolithic architectures

Cons of monolithic architecture

What is a microservice?

Pros of microservices architecture

Cons of microservices architecture

Performance and scaling with microservices vs. monoliths

Deploying microservices vs. monoliths
Security with monoliths vs. microservices

Cost of monoliths vs. microservices

Ops and collaboration with microservices vs. monoliths

Microservices vs. monoliths: Use cases

Netflix: A microservice use case

Segment: A monolith use case

Making the choice that’s right for you

When to migrate from monoliths to microservices

What about service-oriented architectures?

What about serverless architectures?

As new technologies emerge, digital transformation — the act of adopting these new
technologies — becomes more crucial for organizations of all sizes, from startups to
decades-old enterprises. To stay competitive, you must consider how your company will
adapt to emerging tech and how your applications will evolve, too.

The exact architectural style you adopt for your application will depend on your unique
needs, but monoliths and microservices are predominant architecturals. To determine
which is right for you, you should first understand the differences between monolithic

and microservice applications, as well as their advantages and disadvantages.

What is a monolithic architecture?

In a monolithic architecture, all of the distinct components of an application, from
business logic to user interface, exist within the same codebase. A monolith uses a
single programming language, a single repository, and a single environment, so changes
will impact the whole application. A monolithic architecture makes use of tight coupling,
so components are highly dependent and interconnected.

Monoliths have been the standard architectural style for some time, and they remain a
solid choice, especially for small organizations and small teams with a few engineers.
Monoliths are also ideal for applications that won't require many updates over time.

Pros of monolithic architectures

While monoliths may sometimes be overlooked because of their legacy status, they
have a number of benefits.

e Simple development. A monolith is the standard for a reason — all of the code
lives in one place, so it's easier to build upon. New team members will be able to
pick things up faster.

e Simple debugging. Because all of your code is in one place and your service has
no dependencies, it's easier to identify the source of an issue. Developers will
have an easier time recreating environments for testing.

e Standardization and velocity. Standardization has become increasingly
important. Monolithic architectures establish that standard through a singular
codebase, keeping data centralized.

Cons of monolithic architecture

Monoliths may have an edge when it comes to simplicity, but that doesn't make them
the ideal architecture for every application. There are a few downsides to monoliths:

e Scalability. We'll dig into this more soon, but with a monolithic approach, you
can't scale individual components. Even if you're adjusting a single component,
you have to retest and deploy the whole application.

e Slow development. With an entire team working from the same codebase,
developers have to tread carefully, which can slow them down. Testing becomes
even more important — and more painstaking — since a single issue can impact
the entire application.

e Tech stack lock-in. By using a single programming language and a single

https://www.cortex.io/post/why-todays-engineering-leaders-are-focusing-on-standardization-and-how-you-can-too

repository, your developers are locked into a single way of doing things. With
monoliths, you don’t have the flexibility to adopt new technologies as they
emerge.

What is a microservice?

In a microservice architecture, all of the components of an application are broken into
independent, loosely coupled modules with distinct functions. Each module, or service,
has its own repository, its own logic, and its own deployment process. Independent
services interact with one another through interprocess communication mechanisms,
often APIs. Although these services are autonomous, because of their limited scopes, a
microservice application involves a number of dependencies, or services that rely on
other services for data.

This modularity promises greater scalability and agility, which is why the microservice
application has emerged as a popular alternative to the monolithic approach. Because
services are autonomous, it's easier to update and replace individual services and spin
up additional services when demand spikes. As scalability becomes more and more of
a concern, it's no wonder that organizations like Netflix have adopted a microservices
approach.

Pros of microservices architecture

Microservices can streamline your operations, especially if your organization has
naturally divided into smaller teams with distinct domains. There are a few other
significant benefits of microservices:

e Fault isolation. Services operate independently, so a bug is less likely to take
down your entire application. Developers can experiment with new services
without impacting existing service.

e Independent deployments. We'll discuss this more below, but the autonomous
nature of microservices allows developers to deploy services independently, so
they don't have to deploy the whole application for every small update.

e Flexible tech stack. Microservices are language agnostic, giving your devops
team greater freedom to use the programming language that makes sense for
each service. With a microservice architecture, it's easier to adopt new
technologies with simple upgrades.

https://en.wikipedia.org/wiki/Conway%27s_law

Cons of microservices architecture

There’s a lot of buzz about microservices, and for good reason, but the complexity of
this approach requires greater coordination across your team and comes with a few
disadvantages.

e Managing distributed services. As your application grows, you'll develop dozens,
if not hundreds, of services. Managing this many services and their
dependencies can be overwhelming without the right tools. You need dedicated
devops teams that can handle all aspects of a service, from programming to
deployment.

e Testing and troubleshooting. Deployment may be faster, but because of the
dynamic nature of microservices and dependencies, it can be challenging to
recreate environments for testing.

e Barriers to bulk changes. If you want to make sweeping changes to your
services, you'll need to update each one individually. It's entirely doable, but does
require more development time.

Performance and scaling with microservices vs. monoliths

The distributed nature of a microservice architecture makes it highly scalable, both as
demand grows and as your devops teams expand. Microservices allow you to scale up
specific parts of the application, so you have comprehensive control over how the app is
performing at any time. With tools like Kubernetes, you can not only gain insight into
how each component is performing, but you can establish autoscaling protocols for
seamless performance, even during peak demand.

In comparison, a monolithic application is difficult to scale because of its tightly
coupled components. You can't isolate a specific component of a monolith — you have
to scale the entire application, which can get expensive quickly. As features are added,
scaling the unwieldy codebase only becomes more challenging.

While the scalability of a microservices approach is enticing, there are serious
operational roadblocks to consider. Unless you have a catalog or other means of
tracking your dozens of services, managing a distributed system can quickly become
overwhelming for team members, leading to the neglect of certain services. Because
this architectural style relies heavily on APIs, microservices are also more vulnerable to
third-party outages or performance issues due to poorly designed APIs. This is where
monoliths have an edge — in a monolith, all calls are local, so you don’t have to worry
about network latency or failure in the same way.

https://www.cortex.io/post/microservice-catalog-tool
https://www.infoq.com/news/2014/05/microservices/
https://www.infoq.com/news/2014/05/microservices/
https://thenewstack.io/scaling-microservices-on-kubernetes/
https://www.cortex.io/post/why-you-need-a-microservices-catalog-tool
https://www.jrebel.com/blog/performance-problems-with-microservices

Deploying microservices vs. monoliths

The modularity of a microservices architecture allows for the independent deployments
of individual services. Developers can upgrade the services that need attention without
deploying the entire application, enabling them to move faster. The loose coupling of
services allows for rolling deployments, so the application can be upgraded one
component at a time without any downtime. With a microservice approach, teams can
establish a robust CI/CD process and stay competitive.

Microservices have an edge in deployment, but only if the complexity doesn’t become
overwhelming to engineers. Monoliths, on the other hand, operate from a single
codebase, so they tend to be easier to build and deploy, which means developers also
enjoy a simpler workflow. However, altering one component impacts the whole
application, which opens the door opens for bugs and unexpected behavior when
deploying changes.

Security with monoliths vs. microservices

With a monolithic architecture, the whole application is at risk if it falls under attack. A
traditional firewall will provide adequate protection for a small monolith, but large,
complex applications will be more vulnerable.

With a microservices architecture, though, the threat is spread across all of the
individual services. In most cases, the entire application will continue to function, even if
one module comes under attack. There are more potential sites for attack, though, so
software development teams should carefully consider the security of each service.
Because third-party integrations and APIs are critical parts of microservices,
authentication protocols and encryption are particularly important.

Cost of monoliths vs. microservices

When it comes to cost, it's ultimately a matter of when you'd like to pay. Monoliths have
a low upfront cost, but are expensive to develop and scale. Microservices, on the other
hand, come with a significant upfront cost, but their scalability makes this a
cost-effective solution in the long run.

Ops and collaboration with microservices vs. monoliths

The distributed nature of a microservice application means that your teams will also be

https://dzone.com/articles/considering-microservices-heres-why-you-shouldnt-d
https://devops.com/securing-microservices-vs-monolithic-apps/
https://www.digitalocean.com/blog/monolithic-vs-microservice-architecture

distributed. Teams should take ownership over specific services and are expected to
handle all aspects of programming, deploying, and maintaining their services. Even
though teams operate independently of one another, just like services have to
communicate with one another, communication between these teams is highly
important. Leaders will need to make a concerted effort to encourage collaboration
between teams to make sure standards are being met.

With a monolithic application, everyone is working from the same codebase, so
collaboration may come more naturally. However, in many cases the structure of a
monolith doesn't align with the structure of an organization, which can lead to
operational challenges both within and between teams. Team members may also
handle just one facet of development, rather than overseeing and entire service, which
can lead to blind spots.

Microservices vs. monoliths: Use cases

Microservices certainly have their advantages, and it hasn't hurt their reputation that
companies like Amazon and Uber have adopted this architectural style. The widespread
adoption of microservices by leading engineering organizations has generated a lot of
buzz, but that doesn't mean monolithic architectures have totally fallen by the wayside.

Netflix: A microservice use case

In 2008, a database corruption led to a three-day outage at Netflix and they were unable
to ship out any DVDs. This incident caused them to completely reconsider their
infrastructure. They began migrating to AWS Cloud and became one of the first major
enterprises to adopt a microservice approach.

It took seven years for Netflix to complete their migration from a monolithic
architecture. In that time, their user population grew by eight times, and individual users
began consuming more content on average. According to Netflix, “Supporting such
rapid growth would have been extremely difficult out of our own data centers; we simply
could not have racked the servers fast enough.”

Cloud-based microservices enabled Netflix to dynamically scale to meet demand. Not

only could they spin up thousands of virtual servers within minutes, but they were able
to expand their service to over 100 countries. In the process, they significantly reduced
costs without even trying to.

It did take the organization nearly a decade to make the transition, which is a testament
to the effort required to migrate to microservices. Netflix chose a cloud-native approach

https://www.cortex.io/post/how-to-drive-ownership-in-microservices-608f4ed42be94de59553581e99032537
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration

to migration, which meant they essentially overhauled all of their technology and
operations. This required serious coordination and centralized efforts, as well as the
willingness of everyone to learn along the way.

Netflix attests that the migration was well worth the effort — not only were they able to
expand their service, but they’ve created a more reliable service in the process.

Segment: A monolith use case

Segment, a customer data platform founded in 2011, adopted a microservices
architecture early on, but later scrapped it for a monolith. Segment’s devops teams were
quickly overwhelmed by the complexity of microservices, and spent so much time
managing the distributed services that their velocity took a nose-dive.

Segment’s software “ingests hundreds of thousands of events [customer data] per
second and forwards them to partner APIs.” Initially, events were assembled in a queue,
then dispatched to the appropriate destination. With a microservice architecture, this
meant that there was a separate repo for every destination.

The team created shared libraries to manage their dozens of repos, which made it more
difficult to test changes, since deployments impacted every destination. Eventually,
destinations were using different versions of the shared libraries, so the team was left
with the insurmountable task of managing over 100 distinct services with unique load
patterns. Auto-scaling essentially became a manual task.

They decided to consolidate all of the services into a monorepo and merge the queues
for each destination into a single service. For this organization, it made more sense to
collect all of these destinations, rather than deploy over 100 individual services for a
single change to a shared library. This dramatically increased the team'’s velocity, freeing
developers up to make proactive improvements.

Making the choice that'’s right for you

Ultimately, it's not really a question of whether a microservices or monolithic approach
is objectively better — it's a question of what'’s better for your organization and team
members. Before making that decision, consider how your teams are naturally
structured and the ways they already work together.

If you're encountering operational issues with large teams managing unrelated features
within the same codebase, then it likely makes sense to break those features into
microservices and split the team accordingly. This allows individuals to become experts

https://segment.com/blog/goodbye-microservices/
https://leaddev.com/architecture-microservices/conversations-you-need-have-moving-monoliths-microservices

with their services, which can improve velocity.

On the other hand, if you have a small development team that works closely together, a
monolith will likely be easier for them to manage than a sprawling distributed system of
microservices and dependencies.

If the application you intend to build is relatively simple, then keep it simple: use a
monolithic architecture. Simple monoliths also have a brief time to market, so if you're
trying to develop an application quickly, this is the best way to get it off the ground.

However, if you anticipate performing a series of upgrades and updates, a monolith may
quickly become untenable. A microservices approach will give you greater flexibility, and
the long-term scalability may be worth more than entering the market quickly.

No matter how you're structuring your application, it’s critical that you have a means of
monitoring its performance. Cortex offers a suite of solutions that provide visibility into
individual services, so it's easy for your teams to deliver high-quality software. With
features that drive accountability and maintain centralized information, you can make
informed decisions and improve performance. Book a demo of Cortex today to see how
we can help you understand and improve your service architecture.

When to migrate from monoliths to microservices

Don't migrate to microservices just because your competitors are doing it — if your
devops team is working in new systems and rarely interacts with your monolithic app,
then there’s likely no need to migrate. If, on the other hand, your legacy system is
becoming difficult to maintain, or if your teams are already operating in distinct
domains, then it's probably time to consider a migration.

Before embarking on a migration, keep in mind that it doesn’t have to be all or nothing.
You can experiment first by breaking your monolith into macroservices, which maintains
the functionality of your application, but primes it to be broken out into smaller
microservices later on.

Take an incremental approach and transition a few features into microservices, rather
than trying to overhaul the whole application. Don't set a deadline for the migration —
take as much time as you need to make sure everything works as intended before
deployment.

An incremental approach allows your developers to adapt over time. They'll face
responsibilities they may not have encountered with a monolith. For example,

https://www.cortex.io/demo
https://www.infoq.com/articles/lessons-learned-monolith-microservices/
https://www.cortex.io/post/how-to-make-the-move-from-monolith-to-microservices-with-no-regrets

microservice communications require a network, so team members need to be
prepared for a serious uptick in traffic and logging. They also need to be ready to
monitor and manage dozens of distributed services.

What about service-oriented architectures?

A service-oriented architecture (SOA) is very similar to a microservices approach — an
SOA breaks an application into small components with specific responsibilities. The
primary difference between the two is scope: SOAs extend beyond the application and
apply to your entire enterprise.

Rather than communicate through APIs, services in SOAs communicate through an
enterprise service bus (ESB), which requires greater coordination. It also enables
services within SOAs to adopt broader responsibilities than microservices, which are
highly specialized. An SOA will make more sense for large environments, while
microservices are better for small environments, like mobile and web apps.

What about serverless architectures?

Serverless architectures allow your developers to code without considering
infrastructure, handing off the responsibility of managing servers to a third-party cloud
provider. This is not only cost-effective, but allows engineers to focus on innovating
without worrying about managing a server.

At the same time, serverless architectures come with their own challenges, primarily
when it comes to loss of control and security risks. For this reason, a serverless
approach makes the most sense for short-term tasks, or when traffic is unpredictable.

Improve service with Cortex

There's quite a lot involved in choosing the right architectural style for your application
and organization, and at Cortex, we understand the multitude of challenges that
service-based architectures bring. You can trust us to help you transform the way you
build your software — just book a demo today to see how we can help you streamline
your operations and maximize the performance of your services.

https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.datadoghq.com/knowledge-center/serverless-architecture/
https://www.datadoghq.com/knowledge-center/serverless-architecture/
https://www.cortex.io/demo

	Monoliths vs. Microservices: Differences, Pros & Cons, and Choosing the Right Architecture
	What is a monolithic architecture?
	Pros of monolithic architectures
	Cons of monolithic architecture

	What is a microservice?
	Pros of microservices architecture
	Cons of microservices architecture

	Performance and scaling with microservices vs. monoliths
	Deploying microservices vs. monoliths
	Security with monoliths vs. microservices
	Cost of monoliths vs. microservices
	Ops and collaboration with microservices vs. monoliths
	Microservices vs. monoliths: Use cases
	Netflix: A microservice use case
	Segment: A monolith use case

	Making the choice that’s right for you
	When to migrate from monoliths to microservices
	What about service-oriented architectures?
	What about serverless architectures?
	Improve service with Cortex

