
Best Practices for Open-Source
Hardware

As described in the open-source hardware definition and statement principles, the essence of
open-source hardware (OSHW) is sharing the design files for a piece of hardware for others to
modify or make hardware from (including for commercial purposes). There are, in addition,
many other things you can do to encourage the development of a vibrant community of people
who use and improve your open-source hardware project. This document discusses these best
practices.

Elements of an Open-Source Hardware Project
Here are some files that you should consider sharing when publishing your open source
hardware project. You are not required to post them all, but the more you share the more the
community benefits and the higher the likelihood the community will pick up your project.

Overview / Introduction
Your open-source hardware project should include a general description of the hardware’s
identity and purpose, written as much as possible for a general audience. That is, explain what
the project is and what it’s for before you get into the technical details. A good photo or
rendering can help a lot here.

Original Design Files
These are the original source files that you would use to make modifications to the hardware’s
design. The act of sharing these files is the core practice of open-source hardware.

Ideally, your open-source hardware project would be designed using a free and open-source
software application, to maximize the ability of others to view and edit it. For better or worse
however, hardware design files are often created in proprietary programs and stored in
proprietary formats. It is still essential to share these original design files; they constitute the
original “source code” for the hardware. They are the very files that someone will need in order
to contribute changes to a given design.

Try to make your design files easy for someone else to understand. Organize them in a logical
way; comment complex aspects; note any unusual manufacturing procedures; etc.

http://www.oshwa.org/definition/

Examples of Original Design Files include:
●​ 2D drawings or computer-aided design (CAD) files, such as those used to describe

two-dimensional laser cut, vinyl cut, or water-jet cut part, in their original format.​
Example formats: Native 2D design files saved by Corel Draw (.cdr), Inkscape (.svg),
Adobe Illustrator (.ai), AutoCAD, etc.

●​ 3D designs that can be 3D printed, forged, injection molded, extruded, machined, etc.
Example formats: Native files saved by SolidWorks (.sldprt, .sldasm), Rhino, etc.

●​ Circuit board CAD files such as capture files (schematics) and printed-circuit board
(layout) design files. ​
Example formats: Native files saved by Eagle, Altium, KiCad, gEDA, etc.

●​ Component libraries (symbol, footprint, fastener, etc.) necessary for native modification
of CAD files.

●​ Additional technical drawings in their original design formats, if required for fabrication
of the device.

●​ Additional artwork that may be used on the device and is included as part of the
OSHW release, such as an emblem, or cosmetic overlay in the original design format.

In the event that a design was originally created in an alternative format, even one that might
normally be considered as an auxiliary design file (as discussed in the following section), that
original design in the original format could be considered the “original design files”.

Examples of alternative formats that could constitute original design files under special
circumstances include:

●​ Hand-coded G-code for a machined part. (G-code)
●​ Scans of hand-drawn blueprints. (JPEG)
●​ Detailed 3D scans of a hand-carved resin-casting mold. (STL)
●​ Mask pattern for etching a single-side circuit board, as drawn in MS Paint. (PNG)

Auxiliary Design Files
Beyond the original design files, it is often helpful to share your design in additional, more
accessible formats. For example, best practice open-sourcing a CAD design is to share the
design not just in its native file format, but also in a range of interchange and export formats that
can be opened or imported by other CAD programs.

It is also helpful to provide ready-to-view outputs that can easily be viewed by end users who
wish to understand (but not necessarily modify) the design. For example, a PDF of a circuit
board schematic, or an STL of a 3D design. These auxiliary design files allow people to study
the design of the hardware, and sometimes even fabricate it, even without access to particular
proprietary software packages. However, note that auxiliary design files are never allowed as
substitutes for original design files.

Examples of auxiliary design files include:

●​ 2D drawings or CAD files, in a 2D export or interchange format.​
Example formats: DXF, SVG

●​ 2D drawings or CAD files, in an easily viewable 2D export format.​
Example formats: PDF, JPEG, PNG, etc. (Where possible, vector formats are
preferred over bitmap formats.)

●​ 3D designs or CAD files, in a 3D export or interchange format.​
Example formats: STEP, IGES

●​ 2D or 3D designs in manufacturing-ready export formats​
Example formats: G-code, STEP-NC, STL, AMF

●​ Circuit board design files in export or interchange formats. ​
Example formats: EDIF, Open JSON

●​ Circuit board designs in manufacturing-ready formats​
Example formats: Gerber RS-274X, Excellon

●​ Additional technical drawings in their original formats, if required for fabrication of the
device, in a commonly-readable format such as PDF.

●​ Additional artwork, for example different colored skins for an instrument panel.

Bill Of Materials
While it might be possible to infer from the design files which parts make up a piece of
hardware, it is important to provide a separate bill of materials. This can be a spreadsheet (e.g.
CSV, XLS, Google Doc) or simply a text file with one part per line. If your CAD package has
integrated or add-on BOM management tools, those are also a good option. (Examples include
the built-in tools in SolidWorks and bom-ex for Eagle.) Useful things to include in the bill of
materials are part numbers, suppliers, costs, and a short description of each part. Make it easy
to tell which item in the bill of materials corresponds to which component in your design files:
use matching reference designators in both places, provide a diagram indicating which part
goes where, or otherwise explain the correspondence.

Software and Firmware
You should share any code or firmware required to operate your hardware. This will allow others
to use it with their hardware or modify it along with their modifications to your hardware.
Document the process required to build your software, including links to any dependencies (e.g.
third-party libraries or tools). In addition, it’s helpful to provide an overview of the state of the
software (e.g. “stable” or “beta” or “barely-working hack”).

Photos
Photos help people understand what your project is and how to put it together. It’s good to
publish photographs from multiple viewpoints and at various stages of assembly. If you don’t
have photos, posting 3D renderings of your design is a good alternative. Either way, it’s good to
provide captions or text that explain what’s shown in each image and why’s it’s useful.

Instructions and Other Explanations
In addition to the design files themselves, there are a variety of explanations that are invaluable
in helping others to make or modify your hardware:

Making the hardware. To help others make and modify your hardware design, you should
provide instructions for going from your design files to the working physical hardware. As part of
the instructions, it’s helpful to link to datasheets for the components / parts of your hardware and
to list the tools required to assemble it. If the design requires specialized tools, tell people where
to get them.

Using the hardware. Once someone has made the hardware, they need to know how to use it.
Provide instructions that explain what it does, how to set it up, and how to interact with it.

Design rationale. If someone wants to modify your design, they’ll want to know why it is the way
it is. Explain the overall plan of the hardware’s design and why you made the specific choices
you did.

Keep in mind that these instructions may be read by someone whose expertise or training is
different from yours. As much as possible, try to write to a general audience, and check your
instructions for industry jargon, be explicit about what you assume the user knows, etc.

The instructions could be in a variety of formats, like a wiki, text file, Google Doc, or PDF.
Remember, though, that others might want to modify your instructions as they modify your
hardware design, so it’s good to provide the original editable files for your documentation, not
just output formats like PDF.

Open-Source Hardware Processes and Practices

Designing your Hardware
If you’re planning to open-source a particular piece of hardware, following certain best practices
in its design will make it easier for others to make and modify the hardware:

●​ Use free and open-source software design (CAD) tools where possible. If that’s not
feasible, try to use low-cost and/or widely-used software packages.

●​ Use standard and widely-available components, materials, and production processes.
Try to avoid parts that aren’t available to individual customers or processes that require
expensive setup costs.

Hosting your Design Files

A basic way of sharing your files is with a zip file on your website. While this is a great start, it
makes it difficult for others to follow your progress or to contribute improvements.

We recommend using an online source-code repository (like GitHub, Gitorious, or Google Code)
to store your open-source hardware projects. All files (design, bill-of-materials, assembly
instructions, code, etc) should be version controlled where possible. If you want to develop your
hardware publicly, online repositories make it easy to publish changes to your files as you make
them. Or, you might publish updates in conjunction with releases of the hardware.

Most online repositories also include issue trackers, which are good way to keep track of the
bugs in and future enhancements planned for your software in a way that others can view and
comment on. Some include wikis, which can be good places to document your project.

As an alternative to an online repository, you might develop your project in an online CAD tool
(like Upverter). Or, you could share your files on a site like Thingiverse.

Licensing your Designs
While licensing is a complex subject, use of licenses is an important way of signalling how
others can and should use your work. By explicitly applying an open-source license to your
hardware design files and other documentation, you make it clear that others can copy and
modify them. When licensing your project, keep in mind that someone who makes a derivative
of your hardware will probably also want to build on your software, instructions, and other
documentation; you should license not just the hardware design files but also these other
elements of your project.

Note that copyright (on which most licenses are based) doesn’t apply to hardware itself, only to
the design files for it – and, then, only to the elements which constitute “original works of
authorship” (in U.S. law) and not the underlying functionality or ideas. Therefore, it’s not entirely
clear exactly which legal protections are or aren’t afforded by the use of a copyright-based
license for hardware design files – but they’re still important as a way of making clear the ways
in which you want others to use your designs.

There are two main classes of open-source or free-software licenses: copyleft (or viral) licenses
which require that derivatives be licensed under the same terms; and permissive licenses, which
allow others to make modifications without releasing them as open-source hardware. Note that
the definition of open-source hardware specifies that you must allow modification and
commercial re-use of your design, so avoid licenses with a no-derivatives or non-commercial
clause.

Popular copyleft licenses include:

●​ Creative Commons Attribution, Share-Alike (BY-SA)
●​ GNU General Public License (GPL)

https://github.com
http://gitorious.org/
http://code.google.com
http://upverter.com
http://www.thingiverse.com
http://opensource.org/licenses
http://www.gnu.org/licenses/license-list.html
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/copyleft/lesser.html

●​ Hardware-Specific Licenses: TAPR OHL, CERN OHL

Permissive licenses include:

●​ FreeBSD license
●​ MIT license
●​ Creative Commons Attribution (BY)

It is good practice to include a copy of the license in the version control repository, and a
statement in every file or at least the README specifying the author(s) and year(s) of non-trivial
modifications, and the license.

Distributing Open-Source Hardware
●​ Provide links to the source (original design files) for your hardware on the product itself,

its packaging, or its documentation.
●​ Make it easy to find the source (original design files) from the website for a product.
●​ Label the hardware with a version number or release date so that people can match the

physical object with the corresponding version of its design files.
●​ Use the open-source hardware logo on your hardware. Do so in a way that makes it

clear which parts of the hardware the logo applies to (i.e. which parts are open-source).
●​ In general, clearly indicate which parts of a product are open-source (and which aren’t).
●​ Don’t refer to hardware as open-source until the design files are available. If you plan on

open-sourcing the product in the future, say that instead.

Building on Open-Source Hardware
●​ Respect the trademarks of others.
●​ Make useful improvements to a piece of hardware rather than simply selling copies of it.
●​ Share your changes and improvements with the creator of the original hardware.

http://www.tapr.org/OHL
http://www.ohwr.org/projects/cernohl/wiki
http://opensource.org/licenses/BSD-2-Clause
http://creativecommons.org/licenses/by/3.0/

	Best Practices for Open-Source Hardware
	Elements of an Open-Source Hardware Project
	Overview / Introduction
	Original Design Files
	Auxiliary Design Files
	Bill Of Materials
	Software and Firmware
	Photos
	Instructions and Other Explanations

	Open-Source Hardware Processes and Practices
	Designing your Hardware
	Hosting your Design Files
	Licensing your Designs
	Distributing Open-Source Hardware
	Building on Open-Source Hardware

