
Multiple identities in thread design doc

Objective

Moderators sometimes need to take action in their official capacity on a thread where they

already inhabit an anonymous identity. Currently the only way to do this is for the moderator to

reveal themselves as such using their current identity, thus deanonymizing themselves. Instead,

we want them to be able to post as their “mod role” identity regardless of other assigned

identities.

Design goals

● We don’t want everyone to be able to post as multiple identities in a thread.

● Should “moderators” be able to post as multiple identities with any “identity role” they

have or just with specific roles?

○ Similar to how specific roles have a “post_as” permission, they should have a

“override_identity” permission (name TBD) which allows role-havers to use that

role even on threads where they already have an identity.

● Moderators should be able to switch back and forth between anonymous and role

identities.

● “Moderators” should be able to assume a random identity after they already used their

moderator identity in a thread

○ We need to check whether all identities they currently have assigned have the

overridable permission

● We don’t want to allow multiple random identities as part of this design

● If a moderator has multiple roles that can override identities, then the moderator should

be able to post as each of those identities independently



○ For example, if someone is both “admin” and “mod” they would be able to switch

between the two

● Can anyone see that someone is occupying two identities within the same thread?

○ This could be useful for audit purposes in case the multi-identity permission is

being used “maliciously”

○ The admin can know this is happening from the database

○ We’re not going to have any surfacing of this information right now

● What about multiple people having the same role? Can they post as the same identity?

○ This is currently possible (I think), but whether its allowed is independent from

whether the identity can be used when one is already assigned

○ If we want to change this, we should do it as its own design

Types of identities after changes

After these changes we’ll have 3 types of identities:

1. Random identities

2. Non-overriding role identities

3. Overriding role identities

Design

Current design

● The identity of a user in a thread is stored in the user_thread_identities table

● Queries that return threads, contributions or comments join with that table and surfaces

the identity of the author as a secret_identity



○ This search returns the places where the user_thread_identities table is being

used.

● Currently, the getThreadDetails function will check if the user has an identity in the

thread, and whether the user is requesting to post as a role. If the user does not have an

identity in the thread, it will either assign them the requested role or a random one if no

role is requested

○ It would be nice to take this change to clean up getThreadDetails because it’s

written in a very confusing way.

● Requests to create a post/comment/thread with a fixed identity will have the identity_id

parameter set to the external id of the role. Requests without the identity_id are

considered as either random generation (if no identity for the user was specified) or

“same as before” (if there is already an identity).

○ We won’t need to modify these endpoints because their signature will work even

with multiple identities. We may need to change the semantic though, because

we need to specify the identity we want if there are multiple in the thread.

○ Currently the frontend doesn’t show the roles dropdown when an identity is

already assigned.

● When fetching thread or feed data, the identity of the author of every post/comment is

set in the `secret_identity` field.

○ This doesn’t need any update. The only thing that will potentially change is that

there may be posts marked as “own” (so the current user’s) that have different

identities.

● When the user goes to create a post/comment/thread we look at the `posting_identities`

array returned by the `boards/:board_id/` endpoint, and (if the user doesn’t already have

an identity associated in the thread), we display the additional identities in the identity

selector.

○ We will need to indicate which identities have the ability to override an already

existing one.

https://github.com/search?q=repo:BobaBoard/boba-backend+user_thread_identities+path:/%5Eserver%5C//&type=code
https://github.com/BobaBoard/boba-backend/blob/f5448c6f31a1d60dd087330156af81aa319f57af/server/posts/queries.ts#L172


Changes to database/sql queries

● We maintain the user_thread_identities table as is. The first time a user posts in a

thread, that’s where their identity is registered.

● If we get an override request, then the identity will be written to a

user_thread_identity_overrides table, which will have the following schema:

user_thread_identity_overrides {

id,

post_id,

comment_id,

identity_id,

role_id,

CHECK (post_id is not null or comment_id is not null),

CHECK (identity_id is not null or role_id is not null),

}

○ We should check if CHECK has a “xor” option

● All the SQL queries that use user_thread_identities will need to change to fetch the

identity of individual post/comments if it exists

● We will need to add a can_override_identity_as permission similar to post_as
permission for role

● We will need to change the bobadex stats queries to also check for identities assigned in

user_thread_identity_overrides

Changes to server

● Make `getThreadDetails` check whether the user already has an identity associated with

the thread, and in that case rather than blocking the creation of a new identity, check if

all the identities associated with the user have the can_override_identity_as
permission, and only in that case allow an additional identity.

○ Overriding roles can always be assigned



○ If the user already has one or more identities and they’re all overriding, they can

always be assigned the new identity

○ If the user already has one or more identities and one of them is not overriding,

they cannot be assigned an additional identity (unless that identity is overriding)

○ In short: a user in a thread can have 0 or more overriding identities, and 0 or 1

non-overriding identities

● Make sure that the posting endpoints always interpret a request without a specific

identity specified as getting a new random identity (or reusing the same). To post as a

role, the user will always have to specify that specific role.

○ Note: it would be nice to always send up the id of an identity that is already

assigned, even if that identity is a random one rather than a role one.

Unfortunately, we aren’t currently returning these IDs as part of our thread data.

Once we do that, we should make this change.

Changes to API endpoints

● When we get the posting identities from the board metadata, we should know which

ones are overridable by adding a can_ovveride property.

Changes to frontend

● Whenever the user has already a role identity assigned in a thread make sure to always

send it up to the server with the request, or it will be interpreted as “create new random

identity” if there’s no requested identity associated.

● If there is an identity already assigned to the thread, still display an option to select all

the identities with the can_override property

● In places where user_identity is surfaced for threads (like here), that must become an

array.

https://github.com/BobaBoard/boba-frontend/blob/main/src/components/core/editors/utils.tsx#LL119C9-L119C9


Changes to components

● (stretch) In the identities selector dropdown, it would be nice to mark whether an identity
has already been used in the thread or if the user would be using that in that thread for
the first time.


