
PROJECT NAME: AJEC Re-Cycle

Project Description
The purpose of this web application is to allow users the ability to resale and purchase
used bikes. New guests to the site will have the ability to view bike inventory and limited
access to bike details. Once guests create a user profile, they will be able to view full
bike details, which includes the seller's username and email address. In addition, users
have the ability to post bikes for resale with the option to edit and delete the post as
needed.

Timeline

●​ Thursday (All Day)
○​ AM

■​ Get Whimsical Approved
■​ Complete Read.Me
■​ Complete Kanban
■​ Set-up File Framework

○​ PM
■​ Complete Backend
■​ Deploy to Heroku/Atlas
■​ Assign Tasks to Team for Frontend Development

●​ Friday (MVP Due)
○​ AM/PM

■​ Work on individual tasks
■​ Complete MVP for each screen
■​ Create Pull Requests for Each Individual Screen

●​ Saturday (All online from 9AM - 11AM)
○​ AM

■​ Team Check-in
■​ Review Pull- Requests
■​ Merge All Pull Request into Development Branch

●​ Sunday (Flexible, As needed)
○​ AM

■​ Team Check-in
■​ Assign CSS tasks

●​ Monday (All online from 9AM - 11AM- HOLIDAY)
○​ AM

■​ Complete individual CSS tasks
■​ Create Pull Requests for CSS tasks

●​ Tuesday (All-Day)

○​ AM
■​ Review MVP functionality
■​ Deploy to Netlify
■​ Team Check-in
■​ Review Pull- Requests
■​ Merge All Pull Request into Development Branch

○​ PM
■​ Identify PMVP item to integrate into project

●​ Wednesday(All-Day)
○​ AM

■​ Team Check-in
■​ Work on PMVP as a Group
■​ Create Pull Requests

○​ PM
■​ Review Pull Requests
■​ Merge into Development

●​ Thursday
○​ AM

■​ Review all Functionality
■​ Merge into Main Branch

○​ PM
■​ Presentation Run-Through

●​ Friday
○​ Presentation

Team
Artem Furman, Cindy Mit (Github Czar), Emanuella Altidor, Joel Giroux

 Personal Strengths
 Artem: React components
 Cindy: React UI and CSS
 Emanuella: React UI, CSS, debugging
 Joel: React UI, creating algos for functionality, and debugging

 Personal Challenges (Could Use More Exposure)
 Artem: Debugging personal code
 Cindy: Creating functions and conditionals and debugging
 Emanuella: Creating functions and conditionals
 Joel: CSS, authentication

GROUP PLANNING

Team Goals & Values

●​ Functional Code
●​ Interactive, Attractive UI
●​ Thorough Communication Between Teammates

Team Communication Preferences

●​ Slack at any time; DND is on during sleep hours
●​ Team operating hours are M-F, 9-5PM; HW: 5:30-9PM. Friday evening through

Sunday will be as needed.
●​ Respond within 1 hours.
●​ Emanuella is unavailable some days after 10PM.
●​ Joel is unavailable after 7PM
●​ Cindy may be periodically unavailable from 5-9:00 PM during dialysis weekdays.

CODING PRACTICES

Conventions:
Branch Naming

●​ master, development;
●​ sub-branches use “initial-dev” convention, ie: mk-feature-forms
●​ hotfix, feature, refactor

Practices (Please note, this is an example. You don’t need to follow it to a T, but it will
prevent further frustrations.)

1.​ Never code on, merge, or push to Master

2.​ Git Maintainer will create a Development branch and set the upstream so it’s
available to all group members.

3.​ Group members should run a git checkout -b development and a git pull origin
development to link their remote branch to the origin branch.

4.​ Group members can then run git checkout -b feature-branch-name from their

local Development branch.
5.​ Make code additions.

6.​ Once a group member’s code is complete and ready to merge with Development,
that group member should run a “safety pull” from Development to check for any
updates made while you were coding.

7.​ If there are no conflicts, you can initiate a pull request on GitHub. Confirm the PR
is pulling from your branch and comparing to Development; title the PR
“BRANCH NAME to DEVELOPMENT.” This PR and merge will require the git
maintair’s approval to finalize the merge.

8.​ Once that merge is finalized, all group members should add and commit their
code to their local branch.

9.​ Then, they should run a checkout to their local Development branch, followed by
a git pull origin development;

10.​Then they should run a checkout to the feature branch they were working on and
also run a git pull origin development.

11.​Continue coding on your feature branch. Return to step 6 as needed.

12.​Once your Development branch is ready to merge with Master, the Git Maintainer
can make a PR from Development to Master. This PR requires at least 3 of 4
group members’ approval to finalize the merge.

13.​Once that merge is finalized, all members should pull origin master to all local
main and sub branches, if possible.

Express Routes
MongoDB Database & Collection Names
React Component Names & Folders

Task Tracking
Kanban Board

