
Gateway API: Authorization Policy API 
Design Options for TargetRef 
 
This document presents design options for implementing authorization policies in Gateway API, 
specifically targeting East/West (in-cluster) traffic for Mesh implementations. The goal is to 
create a vendor-neutral API that works across different mesh architectures while addressing the 
unique constraints of sidecar-based and ambient mesh implementations. 

 

Mesh Implementation Types 

Sidecar-Based Meshes 

●​ Architecture: Sidecar proxy deployed alongside every pod 
●​ Capabilities: Can enforce all request attributes (L4 and L7) 
●​ Targeting: Uses label selectors to target sidecars for policy distribution 
●​ Enforcement Point: Single enforcement point (the sidecar) 

Ambient Meshes 

●​ Architecture: Two-tier proxy system 
○​ Node-L4-proxy: Handles identity-based policies and port enforcement 
○​ L7 enforcement point (waypoint proxy): Handles advanced L7 features 

●​ Targeting: 
○​ Label selectors for node proxy distribution 
○​ Service targetRef for L7 enforcement at waypoints 
○​ Constraint: Selectors and targetRef cannot be used together 

Key Challenges 

1.​ Architectural Differences: Ambient meshes separate L4 and L7 enforcement, while 
sidecars handle both 

2.​ Targeting Mechanisms: 
○​ Ambient struggles with label selectors for L7 enforcement on waypoints 
○​ Sidecars have difficulty supporting Service targeting for L7 enforcement 

3.​ API Consistency: Need a unified approach that works across all implementations 

 



None

None

Design Options 

Option 1: Separate L4 and L7 APIs 

Overview 

Create two distinct APIs: 

●​ L4 Authorization Policy: Handles identity-based and port-based authorization 
●​ L7 Authorization Policy: Superset of L4 with additional L7 features (headers, paths, 

methods, etc.) 

Implementation Details 

L4 Authorization Policy 

apiVersion: gateway.networking.k8s.io/v1alpha1 
kind: L4AuthorizationPolicy 
metadata: 
  name: l4-authz-policy 
spec: 
  targetRef: 
    kind: Pod 
    selector: {} 
  rules: 
  - authorizationSource: 
      serviceAccount: ["default/productpage"] 
    tcpAttributes: 
      ports: [9080] 
 

L7 Authorization Policy 

apiVersion: gateway.networking.k8s.io/v1alpha1 
kind: L7AuthorizationPolicy 
metadata: 
  name: l7-authz-policy 
spec: 



  targetRef: 
    # Label selector or Service reference 
  rules: 
  - authorizationSource: 
      serviceAccount: ["default/productpage"] 
    tcpAttributes: 
      ports: [9080] 
    httpAttributes: 
      paths: ["/api"] 
      methods: ["GET", "POST"] 
 

Advantages 

●​ Broad Compatibility: L4 API implementable by almost every mesh 
●​ Baseline Portability: Provides consistent L4 authorization across implementations 
●​ Ambient Optimization: Convenient for ambient meshes when waypoints aren't involved 
●​ Clear Separation: Distinct APIs for distinct enforcement points 
●​ Implementation Flexibility: Each mesh can optimize for its architecture 

Disadvantages 

●​ Migration Complexity: Users upgrading from L4 to L7 must: 
○​ Create new L7 policy 
○​ Potentially change targetRef 
○​ Remove old L4 policy 
○​ Risk of policy enforcement gaps during transition 

●​ User Experience: 70%+ of mesh users need L7 features, making separate APIs 
potentially cumbersome 

●​ Policy Management: Harder to understand which policies are actually enforced 
●​ Operational Overhead: More APIs to manage and understand 

Option 2: Single API with Validation 

Overview 

Create one unified authorization policy API with implementation-specific validation using 
Validating Admission Policies (VAP). 

Implementation Details 



None

Unified Authorization Policy 

apiVersion: gateway.networking.k8s.io/v1alpha1 
kind: AuthorizationPolicy 
metadata: 
  name: unified-authz-policy 
spec: 
  targetRef: # each mesh implementation bundles with VAP 
     # label selector for sidecar and l4-ambient 
     # Service for L7 ambient 
  rules: 
    - authorizationSource: 
        serviceAccount: ["default/productpage"] 
      tcpAttributes: 
        ports: [9080] 
      httpAttributes:  
        paths: ["/api"] 
        methods: ["GET", "POST"] 

 

Validation Logic 

●​ Sidecar Implementation VAP: Validates that targetRef is not a Service 
●​ Ambient Implementation VAP: Validates that if targetRef uses label selectors, only L4 

attributes are specified 

Advantages 

●​ Unified Experience: Single API for all authorization needs 
●​ Smooth Migration: Users can add L7 features to existing policies without creating new 

ones 
●​ Familiar Pattern: Matches current mesh user expectations 
●​ Simplified Management: One API to understand and manage 
●​ Flexible Enforcement: Implementations can enforce at appropriate points 

Disadvantages 

●​ Validation Complexity: Requires sophisticated VAP rules 
●​ Mixed Cluster Challenges: Potential confusion with both sidecar and ambient 

workloads 
●​ Implementation Burden: Each mesh must implement validation logic 



None

●​ Error Handling: More complex error scenarios and status reporting 

 

Option 3: Different Scoping 

What if this will be about where the policy applies rather than what it contains? 

# Network-scoped policy (L4 enforcement points) 
kind: AuthorizationPolicy 
metadata: 
  name: network-authz 
spec: 
  enforcementLevel: "network"  # Enforced at L4 proxies 
  targetRef: # Label selectors work here 
  rules: 
    - authorizationSource: 
        serviceAccount: ["default/productpage"] 
      tcpAttributes: 
        ports: [9080] 
 
# Application-scoped policy (L7-only enforcement points and 
sidecars) 
kind: AuthorizationPolicy   
metadata: 
  name: app-authz 
spec: 
  enforcementLevel: "application"  # Enforced at L7 proxies 
  targetRef:  # each mesh implementation bundles with VAP 
     # label selector for sidecar 
     # Service for L7 ambient​
 
  rules: 
    - authorizationSource: 
        serviceAccount: ["default/productpage"] 
      tcpAttributes: 
        ports: [9080] 



None

None

      httpAttributes:  
        paths: ["/api/"] 
        methods: ["GET", "POST"] 
 

 

For Ambient Mesh 
 

# This would be enforced at node-l4-proxy 
kind: AuthorizationPolicy 
spec: 
  scope: "network" 
  targetRef:  

Kind: Pod 
Selector: {} 

  rules: # Only L4 features allowed 
 
# This would be enforced at waypoint 
kind: AuthorizationPolicy 
spec: 
  enforcementLevel: "application"   
  targetRef:  

Kind: Service # Works with ambient waypoints 
Name: foo 

  rules: # L4 + L7 features allowed 

For Sidecar Mesh 
 

# Both enforced at sidecar, but different feature sets 
kind: AuthorizationPolicy 
spec: 



None

  enforcementLevel: "network"    # Sidecar enforces, but only L4 
features 
  enforcementLevel: "application" # Sidecar enforces with full 
L4+L7 features 

 

Conclusion 

Single API with Validation and enforcementLevel 

Create one unified authorization policy API with implementation-specific validation using 
Validating Admission Policies (VAP). Additionally introducing a new enforcementLevel enum 
to simplify validation and enable the user to clarify intent 

 

# Network-scoped policy (L4 enforcement points) 
kind: AuthorizationPolicy 
metadata: 
  name: network-authz 
spec: 
  enforcementLevel: "network"  # Enforced at L4 proxies 
  targetRef:  
    kind: Pod 
    selector: {} 
  rules: 
    - authorizationSource: 
        serviceAccount: ["default/productpage"] 
      tcpAttributes: 
        ports: [9080] 
 
# Application-scoped policy (L7-only enforcement points and 
sidecars) 
kind: AuthorizationPolicy   



metadata: 
  name: app-authz 
spec: 
  enforcementLevel: "application"  # Enforced at L7 proxies 
  targetRef: # Service for Ambient implementations, label-selector 
for sidecar implementations.​
 
  rules: 
    - authorizationSource: 
        serviceAccount: ["default/productpage"] 
      tcpAttributes: 
        ports: [9080] 
      httpAttributes:  
        paths: ["/api"] 
        methods: ["GET", "POST"] 

 
 

 

Mesh Implementation Behavior 

Sidecar Meshes 

●​ Network Level: Sidecar enforces policy but only uses L4 attributes 
●​ Application Level: Sidecar enforces policy with full L4+L7 capabilities 

Ambient Meshes 

●​ Network Level: Node-L4-proxy enforces policy using labelSelector targeting 
●​ Application Level: Waypoint proxy enforces policy using service targetRef targeting 

VAP Validation:  

○​ Sidecar mesh: Ensures application-level policies don't use targetRef: Service 
(since sidecars use labelSelector) 

○​ Ambient: Ensures application-level policies don't use label-selectors. 
○​ Both sidecar and ambient: ensures network level policies do use label 

selectors 

Advantages 



●​ Clear Intent: Users explicitly state where they want enforcement 
●​ Flexible Targeting: Different targetRef types for different enforcement points 
●​ Migration Path: Users can start with network-level and upgrade to application-level 

easily 
●​ Implementation Alignment: supporting different meshes architectures 
●​ Single API: No duplication of schemas or concepts 
●​ Validation Clarity: Clear rules about what's allowed at each level 

Disadvantages 

●​ Complexity: Users must understand enforcement levels 
●​ VAP Dependency: Requires validation rules 

 

 

 


	Gateway API: Authorization Policy API Design Options for TargetRef 
	Mesh Implementation Types 
	Sidecar-Based Meshes 
	Ambient Meshes 

	Key Challenges 
	Design Options 
	Option 1: Separate L4 and L7 APIs 
	Overview 
	Implementation Details 
	L4 Authorization Policy 
	L7 Authorization Policy 

	Advantages 
	Disadvantages 

	Option 2: Single API with Validation 
	Overview 
	Implementation Details 
	Unified Authorization Policy 
	Validation Logic 

	Advantages 
	Disadvantages 

	 
	Option 3: Different Scoping 
	For Ambient Mesh 
	For Sidecar Mesh 
	Single API with Validation and enforcementLevel 
	Mesh Implementation Behavior 



