Airflow 3 Proposal: Synchronous DAG
Execution

This document is intended to elaborate on the “Interactive DAG Execution” conversations in the
Dev list and the initial Airflow 3 proposal shared a couple of weeks ago. Based on some of the
feedback from the community, we decided to change the working name from “Interactive DAG
Execution” to “Synchronous DAG Execution”. This is not yet a formal AIP, but is intended to
facilitate a structured discussion, which will then be followed up with a formal AlP.

Synchronous DAG Execution use cases

Airflow historically has been used for “batch” orchestration and this has been both a strength
and a limitation. But, even as part of Airflow’s early days, the concept of “triggering” a DAG run
through the Ul for debugging has been a core part of the value proposition.

This concept of triggering a DAG run was also added to the Airflow API, so that DAGs could be
invoked programmatically through the API, instead of being only based on a schedule.

As part of Data Driven Scheduling, introduced in Airflow 2.4, DAG invocation progressed further
to support triggering of DAGs based on Dataset update events. This was further enhanced in
Airflow 2.9, with the introduction of API support for Dataset Update events, so that Dataset
updates outside of Airflow could be used to trigger Dependent data pipelines.

More recently, there have been many requests for Synchronous DAG Execution with Airflow.
Some of the use cases are detailed below:

Data-driven Applications

Many Enterprise applications have become data-driven applications, which provide a response
to a customer based on personalized information. For example, a hotel reservation experience
for a customer could include personalized options based on prior customer experience, which
could be aggregated across multiple data systems and obtained during the customer interaction
experience.

Data aggregation Bots

Agents being developed based on Al are commonly being used to aggregate a summary or a
review based on prior trained knowledge of the domain.


https://docs.google.com/document/d/1MTr53101EISZaYidCUKcR6mRKshXGzW6DZFXGzetG3E/

Generative Al

With the advent of Generative Al, a common use case for DAG execution is for inference. Using
the AskAstro LLM application as an example, the steps needed for responding to a question are
on the lines of:

1.

2
3.
4.
5

Rephrase the question using an LLM (multiple times)

Submit multiple versions of the question (original and re-phrased versions) to an LLM
De-duplicate the results

Optionally verify the results including the associated references for the results

Return the answer to the question

The above steps can easily be mapped to a Directed Acyclic Graph. With Airflow, this could be
represented as a DAG with (2) and (4) as Dynamically Mapped Tasks.

However, to cleanly support the above DAG execution for Inference, the final step (5) needs to
be supported in Airflow as a “return the result”.

Proposal

The proposal here has multiple parts as detailed below.

1.

Enable a DAG to be run at the same time by one or many users, possibly with different
parameters, without requiring a unique logical date for each DAGrun. This definitely
builds on the separation between “logical date” and “data interval”, which has been
incrementally been worked on since Airflow 2.2. Another way of saying this is to support
‘non-data-interval DAG runs”.

This particular feature has been requested often including for Hyper parameter tuning as
part of Machine Learning. (This is not proposing that the API server itself runs the DAG)

Add language support within the DAG to return the result in Pythonic form either as a
value or a reference. In practice, this could mean the designation of a single result task
in a DAG.
Therefore, the API invocation for Synchronous DAG Execution would be similar to the
“Trigger DAG” invocation, but would wait for a response from DAG execution, which
could be returned to the user. The reference returned could be a dataset or to a blob in
object storage.
An initial approach for this could be:

- Structure the existing Trigger API to return a "job id", and

- Add a new “poll / wait for completion” APl which can be invoked using the above

“‘job id”.
- Thereby enabling reliable handling of long running jobs.

Return handling

It's critical for a DAG to return a status, even if it is a failure. In the current DAG
execution model, there is no completion event in the case of a task failure, with the
exception of a “Teardown” event. With synchronous execution, a DAG must always:


https://github.com/astronomer/ask-astro

- Return the result to the invoking API as soon as the result is available (from the
result task), without having to wait for the teardown task (if any) to complete (this

is the success case), and
- Return the failure status to the invoking API as a key task in the DAG has failed

(inc upstream_failed etc.), rather than waiting for DagRun completion (i.e waiting
for teardown task completion).



	Airflow 3 Proposal: Synchronous DAG Execution 
	Synchronous DAG Execution use cases 
	Data-driven Applications 
	Data aggregation Bots 
	Generative AI 

	Proposal 

