Q.No	Question	
1	Average case	time complexity for Binary Search
	a.	O(1)
	b.	O(n)
	c.	O(log n)
	d.	O(n log n)
	Answer: C	
2		e time complexity for Merge Sort
	a. b.	O(1) O(n)
	c. d.	O(log n) O(n log n)
	l u.	O(IT log II)
	Answer:d	
3	Average case	e time complexity for Quick Sort
		0(1)
	a.	O(1)
	b.	O(n)
	c. d.	O(log n)
	u.	O(n log n)
	Answer:d	
4	Time Comple	exity for Strassens Matrix Multiplication
	a.	O(n ^{2.7})
	b.	O(n³)
	c.	O(n)
	d.	O(n ⁴)
	Answer:a	
5	What is a Ap	oplication of divide and conquer
	a.	0/1 Knapsack
	b.	Merge Sort
	c.	Minimum cost spanning tree
	d.	Reliability Design
	Answer:b	
6	Factors that	help in deciding the sorting algorithm to be used are
-		
	a.	Memory

	la De Commune
	b. Performance
	c. Flexibility
	d. All
	Answer:d
7	is the maximum no. of steps that can be executed for a given parameter
	a. Best Case
	b. Worst
	c. Average case
	d. None
	Answer:b
8	The number of times a statement is executed is usually referred as
	a. Complexity
	b. Frequency Count
	c. space complexity
	d. None
	Answer: b
9	The running time of the following sorting algorithm depends on whether the
	partitioning is balanced or unbalanced
	a. Insertion sort
	b. Quick sort
	c. selection sort
	d. Merge sort
	Answer: b
10	The complexity of adding two matrices of order m*n is
	a. mn
	b. m+n
	c. max(m,n)
	d.min(m,n)
	answer : A
11	The of an algorithm is the amount of memory it needs to run to
	completion.
	a. Time complexity
	b. Space complexity
	c. Memory Management.
	d. d None
	Answer:b
12	The hipary search is based on the following design technique
12	The binary search is based on the following design technique
	a. Greedy approach
	b. Graph Search
	c. Divide and conquer technique
	d. Convergence Method.

	Answer:c
13	The of an algorithm is the amount of computer time it
	needs to run to completion.
	a. space complexity
	b. time complexity
	c. step count
	d. frequency count
	answer : B
14	The step count is the minimum number of steps that can be executed for
	the given parameters.
	a. average
	b. worst-case
	c. best-case
	d. idle-case
	Answer:c
15	The asymptotic analysis focuses on determiningterms in the complexity
	function.
	a. Smallest
	b. Average.
	c. Biggest
	d. Smallest or Biggest.
	Answer:c
16	If G is a connected undirected graph with n vertices and n-1 edges, then G is a
	in a 13 d connected diffall etted graph with it vertices and it I cages, then a 13 d
	a. BFS graph
	b. DFS graph
	c. Spanning tree
	d. none
	Answer:c
17	The time complexity of the function 3n+2 is
	a. O(n)
	b. O(1)
	c. O(n²)
	d. O(n³)
	Answer: a
18.	algorithm is used to construct Minimum Spanning Tree.

	a. Prims
	b. Kruskal's
	c. both
	d. none
	Answer: c
10	Circus 2 control list size of (m/ and (n/ respectively. The remarks of companies
19	Given 2 sorted list size of 'm' and 'n' respectively. The number of comparisons
	needed in worst case by the merge sort algorithm will be
	a. mn
	b. max(m,n)
	c. min(m,n)
	d. m+n-1
	Answer:d
20	Consider the following functions: $f(n) = 2^n g(n) = n! h(n) = n^{\log n}$,
20	Consider the following functions: I(II) = 2 g(II) = II: II(II) = II
	Which of the following statements about the asymptotic behavior of f(n), g(n) and
	h(n) is true?
	11(11) 13 (1 de:
	a. $f(n) = O(g(n))$; $g(n) = O(h(n))$
	b. $f(n) = \Omega(g(n))$; $g(n) = O(h(n))$
	c. $g(n) = O(f(n))$; $h(n) = O(f(n))$
	$d. h(n)=O(f(n));g(n)=\Omega(f(n))$
	31 11(11) 3(1(11)) ==(1(11))
	Answer:B
21	Knapsack problem is
	a Maximization problem
	a .Maximization problem
	b. minimization problem
	an initial action production
	c. an example of divide and conquer technique
	d. is an example of multi stage graph problem
	Answer:a
22	In Krushkal's algorithm, the edges are selected and added to the spanning tree in
~~	in Krashkars algorithm, the eages are selected and added to the spanning tree in
	order of their weights.
	a. increasing
	b. decreasing
	c. increasing
	d. increasing or decreasing
	answer: A
	allower. A

23	Job sequencing with deadlines problem, for any Job i the profit Pi is earned if and only if _
	a. the job is completed by its deadline.
	b. the Job is initiated before the deadline.
	c. half of the Job is completed by its deadline.
	d. 75 % of the Job is completed by its deadline
	Answer:a
24	If M=15, n=4, p=(10,10,12,18) and w=(2,4,6,9) of 0/1 knapsack problem then the optimal solution is _
	a. (1,1,0,1)
	b. (1,1,1,1)
	c. (1,0,1,1)
	d.(1,0,0,1)
	Answer:d
25	In the Job sequencing with deadlines problem, for the given set of n jobs,
	a. only one machine is available for processing jobs
	b. n machines are available for processing the Jobs
	c. n/2 machines are available for processing the Jobs
	d. n/4 machines are available for processing the Jobs
	Answer:a
26	The value of a feasible solution J for the Job sequencing with deadlines problem is
	a. the average of the profits of the jobs in J
	b. the sum of the profits of the Jobs in J
	c. the square root of the sum of the profits of the Jobs in J
	d. the max. difference in the profits of the Jobs in J
	Answer:b

27	The value of the optimal solution for n=4, P=(100,10,15,27) and d=(2,1,2,1) in Job sequencing with deadlines problem is $____$	
	a. 152	
	b. 142	
	c. 127	
	d. 25	
	Answer:c	
28	If M=15, n=4, p=(10,10,12,18) and w =(2,4,6,9) of 0/1 knapsack problem then the maximum profit is $____$	
	a. 32	
	b. 34	
	c. 36	
	d. 38	
	Answer:d	
29	The single-source shortest path problem is to find shortest paths from a source vertex to	
	in the graph. a. nearest vertex	
	b. adjacent vertex	
	c. same vertex	
	d. all vertices	
	answer : D	
30		
30	answer : D Given a function to compute on 'n' inputs, the strategy	
30	answer : D Given a function to compute on 'n' inputs, the strategy suggests splitting the inputs into 'k' distinct subsets. a. greedy method b.master theorem c. divide and conquer d. disjoint sets	

	a. small
	b. large
	c. issmall()
	d.small(P)
	answer : D
32	is a function that determines the solution to the problem p using the solutions to the sub problems p1, p2,, pk.
	a. divide b. small c. large d. combine Answer: D
33	The worst case time complexity of Quick sort is a) O(n log n) b) O(n2) c) O(log n) d) O(n ⁷) answer : B
34	The single-source shortest path problem has a good well known solution of the type a.brute force b.greedy c.DFS d. divide and conquer answer : B
35	A feasible solution that either maximizes or minimizes a given objective function is called an a. feasible solution b.optimal solution c.nearest optimal d.locally optimal

	answer : B
36	Best case time complexity for Binary Search
	a. O(1)
	b. O(n) c. O(log n)
	d. O(n log n)
	Answer: a
37	Time complexity of job sequencing with deadlines is
	a. O(n²)
	b. O(n) c. O(log n)
	d. O(n log n)
	Answer : a
38	Time complexity of greedy knapsack is
	a. O(n²)
	b. O(n)
	c. O(log n) d. O(n log n)
	Answer : d
39	The no of possible spanning trees that we can construct from a given graph with 'n'
	no of nodes are
	a. n ²
	b. n ⁿ
	c. n ⁿ⁺²
	d. n ⁿ⁻²
	answer: d
40	Removing an edge from a spanning tree results in a
	a. connected graph
	b. cyclic graph

	c. disconnected graph
	d. none
	answer : C
	answer : C
41	The minimum no of edges required to construct a spanning tree from a graph with
	n vertices are
	a. n
	b. n+1
	c. n-1
	d. n*n
	answer: C
42	The time required by algorithm Prims is
	$\begin{array}{c} b) \Theta (n) \\ c) \Theta (n2) \end{array}$
	D) O (n2)
	Answer: D
43	Which of the following is/are the operations performed by kruskal's algorithm.
	i) sort the edges of G in increasing order by length ii) keep a subgraph S of G
	initially empty iii) builds a tree one vertex at a time
	A) i, and ii only
	B) ii and iii only
	C) i and iii only
	D) All i, ii and iii
	Answer: A
	Allswel. A
44	Rather than build a subgraph one edge at a time builds a
	tree one vertex at a time.
	A) kruskal's algorithm
	B) prim's algorithm
	C) dijkstra algorithm
	D) bellman ford algorithm
	Answer: B
45	is known as a greedy algorithm, because it chooses at each step the
	cheapest edge to add to subgraph S.
	A) Kruskal's algorithm

	B) Prim's algorithm
	C) Dijkstra algorithm
	D) Bellman ford algorithm
	b) beimail ford algorithm
	Answer: A
46	The sorting technique where array to be sorted is partitioned again and again in such a way that all elements less than or equal to partitioning element appear before it and those which are greater appear after it, is called a. merge sort
	b. quick sort
	c. selection sort
	d. heap sort
	answer: B
47	The quick sort algorithm exploit design technique
	a. greedy method
	b. divide and conquer
	c. dynamic programming
	d.backtracking
	answer: B
48	The best average behaviour is shown by
	a. quick sort
	b. merge sort
	c. insertion sort
	d. heap sort
	answer: A
49	An algorithm is made up of two independent time complexities f (n) and g (n). Then the complexities of the algorithm is in the order of
	a. $f(n) \times g(n)$
	b. $Max (f(n),g(n))$
	c. $Min(f(n),g(n))$
	d. f(n)+g(n)
	answer: B
50	Adding an edge to a spanning tree results in a
	a. connected graph
	b. cyclic graph
	c. disconnected graph
1	

d. none
answer : b